Environmental Engineering Reference
In-Depth Information
reFereNCes
[1] Colella WG, Jacobson mZ, Golden Dm. Switching to a U.S. hydrogen fuel cell vehicle fleet: the resultant change in emissions, energy
use and greenhouse gases. J Power Sources 2005;150:150-181.
[2] Bernay C, marchand m, Cassir m. Prospects of different fuel cell technologies for vehicle application. J Power Sources
2002;108:139-152.
[3] helmolt r, Eberle U. Fuel cell vehicles: status 2007. J Power Sources 2007;165:833-843.
[4] Dunwoody C. Transition to a commercial fuel cell vehicle market in California. Fuel Cell Bull 2009;11:12-14.
[5] rabis A, rodriguez P, Schmidt TJ. Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges. ACS
Catal 2012;2:864-890.
[6] lee W-D, lim D-h, Chun h-J, lee h-i. Preparation of Pt nanoparticles on carbon support using modified polyol reduction for
low-temperature fuel cells. int J hydrogen Energy 2012;37:12629-12638.
[7] Shang N, Papakonstantinou P, Wang P, Silva SrP. Platinum integrated graphene for methanol fuel cells. J Phys Chem C
2010;114:15837-15841.
[8] Jeng K-T, hsu N-y, Chien C-C. Synthesis and evaluation of carbon nanotube-supported ruSe catalyst for direct methanolfuel cell
cathode. int J hydrogen Energy 2011;36:3997-4006.
[9] Zhang h, Shen PK. recent development of polymer electrolyte membranes for fuel cells. Chem rev 2012;112:2780-2832.
[10] Dupuis A-C. Proton exchange membranes for fuel cells operated at medium temperatures materials and experimental techniques. Prog
mater Sci 2011;56:289-327.
[11] hanot h, Ferain E. industrial applications of ion track technology. Nucl instrum meth Phys res B 2009;267:1019-1022.
[12] Chen h, Palmese Gr, Elabd yA. membranes with oriented polyelectrolyte nanodomains. Chem mater 2006;18:4875-4881.
[13] Varin, r. A.; Czujko, T.; Wronski, Z. S. Nanomaterials for Solid State Hydrogen Storage ; Springer, New york : 2009.
[14] Jena P. materials for hydrogen storage: past, present, and future. J Phys Chem lett 2011;2:206-211.
[15] Peighambardoust SJ, rowshanzamir S, Amjadi m. review of the proton exchange membranes for fuel cell applications. int J hydrogen
Energy 2010;35:9349-9384.
[16] Zhang y, Pitchumani r. Numerical studies on an air-breathing proton exchange membrane (PEm) fuel cell. int J heat mass Transfer
2007;50:4698-4712.
[17] Beicha A. modeling and simulation of proton exchange membrane fuel cell systems. J Power Sources 2012;205:335-339.
[18] hwang J-J, Chen y-J, Kuo J-K. The study on the power management system in a fuel cell hybrid vehicle. int J hydrogen Energy
2012;37:4476-4489.
[19] Park J-y, Seo y, Kang S, you D, Cho h, Na y. Operational characteristics of the direct methanol fuel cell stack on fuel and energy
efficiency with performance and stability. int J hydrogen Energy 2012;37:5946-5957.
[20] Zhao TS, Xu C, Chen r, Wang WW. mass transport phenomena in direct methanol fuel cells. Prog Energy Combust Sci
2009;35:275-292.
[21] Ahluwalia rK, Wang X. Direct hydrogen fuel cell systems for hybrid vehicles. J Power Sources 2005;139:152-164.
[22] Veziroglu A, macario r. Fuel cell vehicles: State of the art with economic and environmental concerns. int J hydrogen Energy
2011;36:25-43.
[23] Silva rA, hashimoto T, Thompson GE, rangel Cm. Characterization of mEA degradation for an open air cathode PEm fuel cell. int J
hydrogen Energy 2012;37:7299-7308.
[24] Cetinkaya E, Dincer i, Naterer GF. life cycle assessment of various hydrogen production methods. int J hydrogen Energy
2012;37:2071-2080.
[25] Pilavachi PA, Chatzipanagi Ai, Spyropoulou Ai. Evaluation of hydrogen production methods using the analytic hierarchy process. int J
hydrogen Energy 2009;34:5294-5303.
[26] De Wit mP, Faaij APC. impact of hydrogen onboard storage technologies on the performance of hydrogen fuelled vehicles: A techno-
economic well-to-wheel assessment. int J hydrogen Energy 2007;32:4859-4870.
[27] yuan X-Z, li h, Zhang S, martin J, Wang h. A review of polymer electrolyte membrane fuel cell durability test protocols. J Power
Sources 2011;196:9107-9116.
[28] Zamel N, li X. Effect of contaminants on polymer electrolyte membrane fuel cells. Prog Energy Combust Sci 2011;37:292-329.
[29] Choi K-S, Kim h-m, yoon hC, Forrest mE, Erickson PA. Effects of ambient temperature and relative humidity on the performance of
Nexa fuel cell. Energy Convers manage 2008;49:3505-3511.
[30] liu D, Case S. Durability study of proton exchange membrane fuel cells under dynamic testing conditions with cyclic current profile.
J Power Sources 2006;162:521-531.
[31] Shen Q, hou m, liang D, Zhou Z, li X, Shao Z, yi B. Study on the processes of start-up and shutdown in proton exchange membrane
fuel cells. J Power Sources 2009;189:1114-1119.
Search WWH ::




Custom Search