Environmental Engineering Reference
In-Depth Information
[146] Christiansen BC, Balic-Zunic T, Petit P-O, Frandsen C, Merup S, Geckeis H, Katerinpoulou A, Stipp SLS. Composition and structure
of iron bearing, layered double hydroxide (LDH)—green rust sodium sulphate. Geochim Cosmochem Acta 2009;73:3579-3592.
[147] Dong X, Xhang y, Liu B, Zhen y, Hu H, Xue G. Double sandwich polyoxometalate and its Fe(II) substituted derivative [As 2 Fe 5 Mo 21 O 82 ] 17−
and [As 2 Fe 6 Mo 20 O 80 (H 2 O) 2 ] 16− . Inorg Chem 2012;51:2318-2324.
[148] yan J, Gao J, Long D-L, Miras Hn, Cronin L. Self-assembly of a nanosized, saddle-shaped, solution-stable polyoxometallate anion
built from pentagonal building blocks: [H 34 W 119 Se 8 Fe 2 O 420 ] 54− . J Am Chem Soc 2010;132:11410-11411.
[149] Lee C, Keenan CR, Sedlak DL. Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and
ferrous iron in the presence of oxygen. Environ Sci Technol 2008;42:4921-4926.
[150] Vila-nadal L, Mitchell SG, Rodriguez-Fortea A, Miras Hn, Cronin L, Poblet JM. Connecting theory with experiment to understand
the initial nucleation steps of heteropolyoxometalate clusters. Phys Chem Chem Phys 2011;13:20136-20145.
[151] Zimmerman, AH. Nickel-Hydrogen Batteries: Principles and Practice . Aerospace Press, AIAA, El Segundo, 2011.
[152] Lyons MEG, Rebouillat S. Paving the way to the integration of smart nanostructures: part I: nanotethering and nanowiring via material
nanotechnology and electrochemical identification. Int J Electrochem Sci 2009;4:481-515.
[153] Rebouillat S, Lyons MEG, Brandon MP, Doyle RL. Paving the way to the integration of smart nanostructures: part II: nanostructured
microdispersed hydrated metal oxides for electrochemical energy conversion and applications. Int J Electrochem Sci 2011; 6:5830-5917.
[154] Thaller LH, Zimmerman AH. Overview of the design, development, and application of nickel-hydrogen batteries . nASA/TP-2003-211905.
Hanover: nASA Center for Aerospace Information; 2003.
[155] Chen K-F, Li S, Zhang W. Renewable hydrogen generation by bimetallic zero valent iron particles. Chem Eng J 2011;170:562-567.
[156] Reardon EJ. Styles of corrosion and inorganic control on hydrogen pressure buildup. Environ Eng Sci 2005;39:7311-7317.
[157] Zhao C, Reardon EJ. H2 gas charging of zero-valent iron and TCE degradation. J Environ Protect 2012;3:272-279.
[158] Soukup K, Rogut J, Grabowski J, Wiatowski M, Ludwik-Pardala M, Schneider P, Solcova O. Porous iron and ferric oxide
pellets for hydrogen storage: texture and transport characteristics. Advances in Control, Chemical Engineering and Mechanical
Engineering. WSEAS Press, 2010. pp 99-103. Available at http://www.wseas.us/e-library/conferences/2010/Tenerife/MECHECICOn/
MECHECICOn-19.pdf. Accessed June 2, 2014.
[159] Rogut, J. The potential of nanoscience and nanotechnology in the development of innovative thermochemical processes of separation,
purification and compression of hydrogen and carbon dioxide in emerging technologies. Nanotech Europe Institute for Energy; 2009.
30 pp. ftp://data.cc-nanochem.de/nanotechEurope2009/167.pdf
[160] Singh A, Al-Raqom F, Klausner J, Petrasch J. Hydrogen production via iron/iron oxide looping cycle. Proceedings of the ASME 2011
5th International Conference on Energy Sustainability; 2011, ES2011-54499, 1-10. Available at http://itme000.louisiana.edu/assign/
Solar%20Thermal%20Project/Literature/ASME%20ES%202011/ES2011-54499.pdf. Accessed June 2, 2014.
[161] Gunawardana B, Singhal n, Swedlund P. Degradation of chlorinated phenols by zero valent iron and bimetals of iron: a review. Environ
Eng Res 2011;16:187-203.
[162] Mueller nC, nowack B. nano zero valent iron—THE solution for water and soil remediation? Report of the Observatory nAnO.
EMPA; 2010. 34 pp. Available at www.observatorynano.eu
[163] noubactep C, Care S, Crane R. nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Pollut
2012;223:1363-1382.
[164] Chrysochoou M, McGuire M, Dahal G. Transport characteristics of tea green nano-scale zero valent iron as a function of soil miner-
alogy. Chem Eng Trans 2012;28:6.
[165] Chrysochoou M, Johnston C, Dahal G. A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium
polysulfide and green-tea nanoscale zero valent iron. J Hazard Mater 2012;201-202:33-42.
[166] Bokare AD, Chi W. Zero-valent aluminium for oxidative degradation of aqueous organic pollutants. Environ Sci Technol 2009;43:7130-7135.
[167] Taylor RM, Robbins RG. Treatment of Berkley Pitlake water using the green precipitate process. Proceedings of the 1998 Conference
on Hazardous Waste Research 58 Utah, May 18-21, 1998. 1-14. Available at www.engg.ksu.edu/HSRC/98Proceed/
[168] Zang W, Fyfe WS, Barnett RL. A silver-palladium alloy from the Bahia lateritic gold deposit, Carajas, Brazil. Mineral Mag
1992;56:47-51.
[169] Beverskog B, Puigdomenech I. Pourbaix diagrams for the system copper-chlorine at 5-100°C. SKI Rapport 98:19. Swedish nuclear
Power Inspectorate, 1998.
[170] Hu QH, Zavarin M, Rose TP. Effect of reducing groundwater on the retardation of redox-sensitive radionuclides. Geochem Trans
2008;9:12. DOI: 10.1186/1467-4866-9-12.
[171] Davoodi A, Pakshir M, Babaiee M, Ebrahimi GR. A comparative H2S corrosion study of 304L and 316L stainless steels in acidic
media. Corrosion Sci 2011;53:399-408.
[172] Hem JD. Chemical equilibria affecting the behaviour of manganese in natural water. Hydrolog Sci J 1963;8:30-37.
[173] Brookins DG. Eh-pH diagrams for the rare earth elements at 25°C and one bar pressure. Geochem J 1983;17:223-229.
Search WWH ::




Custom Search