Environmental Engineering Reference
In-Depth Information
[87] Berendahl JA, Thies TP. Fenton's oxidation of MTBE with zero valent iron. Water Res 2004;38:327-334.
[88] Chang M-C, Shu H-y, Hsieh W-P, Wang M-C. Using nanoscale zero-valent iron for the remediation of polycyclic aromatic hydrocarbons
contaminated soil. J Air Waste Manage Assoc 2005;55:1200-1207.
[89] Chang M-C, Shu H-y, Hsieh W-P, Wang M-C. Remediation of soil contaminated with pyrene using ground nanoscale zero-valent iron.
J Air Waste Manage Assoc 2007;57:221-227.
[90] Kim y-H, Shin WS, Ko S-O, Kim M-C. Reduction of aromatic hydrocarbons by zero-valent iron and palladium catalyst . In: Zachry T,
editor, Environmental and Waste Management Symposium ; March 28-April 1, 2004; American Chemical Society; 2004. 5 pp. Available
at http://ersdprojects.science.doe.gov/ersd/workshop_pdfs/california_2004/p132.pdf. Accessed June 2, 2014.
[91] Sanchez I, Stuber F, Font J, Fortuny A, Fabregat A, Bengoa C. Elimination of phenol and aromatic compounds by zero valent iron and
EDTA at low temperature and atmospheric pressure. Chemosphere 2007;68:338-344.
[92] Hori y, Murata A, Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in
aqueous solution. J Chem Soc Faraday Trans 1 1985;85:2309-2326.
[93] Hardy LI, Gilham RW. Formation of Hydrocarbons from the reduction of aqueous CO 2 by zero valent iron. Environ Sci Technol
1995;30:57-65.
[94] Deng B, Cambell TJ, Burris DR. Hydrocarbon formation in metallic iron/water systems. Environ Sci Technol 1997;31:1185-1190.
[95] Antia DDJ. Oil polymerisation and fluid expulsion from low temperature, low maturity, over pressured sediments. J Petrol Geol
2008;31:263-282.
[96] Antia DDJ. Hydrocarbon formation in immature sediments. Adv Petrol Expl Dev 2011;1:1-13.
[97] Antia DDJ. Polymerisation theory for a low temperature catalytic formation of petroleum hydrocarbons involving carbon dioxide,
methane and hydrogen in sedimentary rocks. J Appl Geochem 2011;13:142-148.
[98] Antia DDJ. Oil reserves attributable to low temperature and high pressure catalytic processes. Indian J Petrol Geol 2011;19
(1):1-44.
[99] Cai K, Phillips DH, Elliott C, Van der Heiden E, Scippo M-L, Muller M, Connolly L. Removal of androgens and estrogens from water
by reactive materials. J Water Res Protect 2010;2:990-993.
[100] Smith T, Wychick D. Colloidal iron dispersions prepared via the polymer catalysed decomposition of iron pentacarbonyl. J Phys Chem
1980;84:1621-1629.
[101] Dold B. Basic concepts of environmental geochemistry of sulphide mine-waste. Mineralogia, geoquimica y geomicrobiologia para el
manejo ambiental de desechos mineros . XXIV Curso Latino de Metalogina, August22-September 2, 2005, Lima, Peru Colorado:
UnESCO-SEG, SEG; 2005. 36 pp.
[102] Dold B. Basic concepts in environmental geochemistry of sulfidic mine-waste management. In: Kumar ES, editor. Waste Management .
Croatia: Intech; 2010. p 173-198.
[103] Pourbaix M. Atlas of electrochemical equilibria in aqueous solutions . Houston: nACE International; 1974.
[104] Verink ED. Simplified procedure for constructing Porbaix diagrams. In: Revie RW, editor. Uhlig's Corrosion Handbook . 3rd ed.
Hoboken: John Wiley & Sons Inc; 2011.
[105] Thirunavukkarasu OS, Viraraghavan T, Subramanian KS. Arsenic removal from drinking water using granular ferric hydroxide. Water
SA 2003;29:161-170.
[106] Giles DE, Mohapatra M, Issa TB, Anad S, Singh P. Iron and aluminium based adsorption strategies for removing arsenic from water.
J Environ Manage 2011;92:3011-3022.
[107] Mamindy-Pajany y, Hurel C, Marmier n, Romeo M. Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite
and zero-valent iron: effects of pH, concentration and reversibility. Desalination 2011;281:93-99.
[108] Tanbooncuy V, Grisdanurak n, Liao CH. Background species effect on aqueous arsenic removal by nano-zero-valent iron using
fractional factorial design. J Hazard Mater 2012;205-206:40-46.
[109] Duarte AALS, Cardoso SJA, Alcada AJ. Emerging and innovative techniques for arsenic removal applied to a small water supply
system. Sustainability 2009;1:1288-1304.
[110] nikolaidis nP, Dobbs GM, Lackovic JA. Arsenic removal by zero-valent iron: field, laboratory and modelling studies. Water Res
2003;37:1417-1425.
[111] Jain CK, Singh RD. Arsenic removal using adsorptive media treatment process. India Water Week. Water Energy and Food Security:
Call for Solutions, April 10-14, 2012 new Delhi: Ministry of Water Resources; 2012.
[112] Gottinger AM, Wild DJ, McMartin D, Moldovan B, Wang D. Development of an iron-amended biofilter for removal of arsenic from
rural Canadian prairie potable water. nRCC-53267. Ottawa: national Research Council Canada; 2010. 14 pp.
[113] noubactep C. Characterizing the reactivity of metallic iron in Fe 0 /As-rock/H 2 O systems by long-term column experiments. Water SA
2012;38:511-518.
[114] noubactep C. On the mechanism of microbe inactivation by metallic iron. J Hazard Mater 2011;198:383-386.
Search WWH ::




Custom Search