Environmental Engineering Reference
In-Depth Information
[88] Zelmanov g, Semiat r. iron(3) oxide-based nanoparticles as catalysts in advanced organic aqueous oxidation. Water res
2008;42:492-498.
[89] Brillas e, Calpe JC, Casado J. mineralization of 2,4-d by advanced electrochemical oxidation processes. Water res 2000; 34:2253-2262.
[90] (a) isarain-Chávez e, Arias C, Cabot Pl, Centellas F, rodríguez rm, garrido JA, Brillas e. mineralization of the drug b-blocker ateno-
lol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H 2 O 2 electrogeneration combined with a carbon-felt
cathode for Fe 2+ regeneration. Appl Catal B environ 2010;96:361-369.
(b) Khataee Ar, Safarpour m, Naseri A, Zarei m. Photoelectro-Fenton/nanophotocatalysis decolorization of three textile dyes mixture:
response surface modeling and multivariate calibration procedure for simultaneous determination. J electroanal Chem 2012;672:53-62.
[91] Brillas e, Sires i, Oturan mA. electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry.
Chem rev 2009;109:6570-6631.
[92] (a) lu l, Ai Z, li J, Zheng Z, li Q, Zhang l. Synthesis and characterization of Fe@Fe 2 O 3 core-shell nanowires and nanonecklaces.
Cryst growth des 2007;7:459-464.
(b) li J, Ai Z, Zhang l. design of a neutral electro-Fenton system with Fe@Fe 2 O 3 /ACF composite cathode for wastewater treatment.
J Hazard mater 2009;164:18-25.
[93] ding x, Ai Z, Zhang l. design of a visible light driven photo-electrochemical/electro-Fenton coupling oxidation system for waste-
water treatment. J Hazard mater 2012;239-240:233-240.
[94] Zarei m, Khataee Ar, Ordikhani-Seyedlar r, Fathinia m. Photoelectro-Fenton combined with photocatalytic process for degradation
of an azo dye using supported TiO 2 nanoparticles and carbon nanotube cathode: neural network modeling. electrochim Acta
2010;55:7259-7265.
[95] (a) Baker dr, Kamat Pv. Photosensitization of TiO 2 nanostructures with CdS quantum dots: particulate versus tubular support
architectures. Adv Funct mater 2009;19:805-811.
(b) Hou y, li xy, Zou xJ, Quan x, Chen gC. Photoeletrocatalytic activity of a Cu 2 O-loaded self-organized highly oriented TiO 2 nano-
tube array electrode for 4-chlorophenol degradation. environ Sci Technol 2009;43 (3):858-863.
[96] Jeon TH, Choi Wy, Park HW. Photoelectrochemical and photocatalytic behaviors of hematite-decorated titania nanotube arrays:
energy level mismatch versus surface specific reactivity. J Phys Chem C 2011;115:7134-7142.
[97] (a) Suslick KS, doktycz SJ, Flint eB. On the origin of sonoluminescence and sonochemistry. ultrasonics 1990;28 (5):280-290.
(b) Petrier C, Jiang y, lamy mF. ultrasound and environment: sonochemical destruction of chloroaromatic derivatives. environ Sci
Technol 1998;32 (9):1316-1318.
(c) Wang l, Zhu l, luo W, Wu y, Tang H. drastically enhanced ultrasonic decolorization of methyl orange by adding CCl4. ultrason
Sonochem 2007;14 (2):253-258.
(d) Wang J, guo y, liu B, Jin x, liu l, xu r, Kong y, Wang B. detection and analysis of reactive oxygen species (rOS) generated by
nano-sized TiO 2 powder under ultrasonic irradiation and application in sonocatalytic degradation of organic dyes. ultrason Sonochem
2011;18:177-183.
[98] Sadjadi S, Sadjadi S, Hekmatshoar r. ultrasound-promoted greener synthesis of benzoheterocycle derivatives catalyzed by nanocrys-
talline copper(ii) oxide. ultrason Sonochem 2010;17:764-767.
[99] Tezcanli-guyer g, ince NH. individual and combined effects of ultrasound, ozone and uv irradiation: a case study with textile dyes.
ultrasonics 2004;42:603-609.
[100] Abbasi m, razzaghi Asl N. Sonochemical degradation of Basic Blue 41 dye assisted by nanoTiO 2 and H 2 O 2 . J Hazard mater 2008;153
(3):942-947.
[101] Wang J, Pan Z, Zhang Z, Zhang x, Wen F, ma T, Jiang y, Wang l, xu l, Kang P. Sonocatalytic degradation of methyl parathion in the
presence of nanometer and ordinary anatase titanium dioxide catalysts and comparison of their sonocatalytic abilities. ultrason
Sonochem 2006;13:493-500.
[102] Wang J, ma T, Zhang Z, Zhang x, Jiang y, Pan Z, Wen F, Kang P, Zhang P. investigation on the sonocatalytic degradation of methyl
orange in the presence of nanometer anatase and rutile TiO 2 powders and comparison of their sonocatalytic activities. desalination
2006;195:294-305.
[103] Wang J, guo B, Zhang x, Zhang Z, Han J, Wu J. Sonocatalytic degradation of methyl orange in the presence of TiO 2 catalysts and
catalytic activity comparison of rutile and anatase. ultrason Sonochem 2005;12:331-337.
[104] Pang yl, Abdullah AZ, Bhatia S. review on sonochemical methods in the presence of catalysts and chemical additives for treatment
of organic pollutants in wastewater. desalination 2011;277:1-14.
[105] Wang J, Jiang y, Zhang Z, Zhang x, ma T, Zhang g, Zhao g, Zhang P, li y. investigation on the sonocatalytic degradation of Acid
red B in the presence of nanometer TiO 2 catalysts and comparison of catalytic activities of anatase and rutile TiO 2 powders. ultrason
Sonochem 2007;14:545-551.
[106] lei Z, ghosh T, Park C-y, Ze-da m, Won-Chun O. enhanced sonocatalytic degradation of rhodamine B by graphene-TiO 2 composites
synthesized by an ultrasonic-assisted method. Chin J Catal 2012;33:1276-1283.
[107] (a) Pang yl, Bhatia S, Abdullah AZ. Process behaviorofTiO 2 nanotube-enhanced sonocatalyticdegradationof rhodamine
Binaqueoussolution. Sep Purif Technol 2011;77:331-338.
Search WWH ::




Custom Search