Environmental Engineering Reference
In-Depth Information
[55] Karnik BS, Baumann mJ, masten SJ, davies SH. AFm and Sem characterization of iron oxide coated ceramic membranes. J mater Sci
2006;41:6861-6870.
[56] Corneal lm, masten SJ, davies SHr, Tarabara vv, Byun S, Baumann mJ. AFm, Sem and edS characterization of manganese oxide
coated ceramic water filtration membranes. J memb Sci 2010;360:292-302.
[57] Corneal lm, Baumann mJ, masten SJ, davies SHr, Tarabara vv, Byun S. mn oxide coated catalytic membranes for hybrid ozonation-
membrane filtration: membrane microstructural characterization. J memb Sci 2011;369:182-187.
[58] (a) Comninellis C, Nerini A. Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J Appl electrochem
1995;25:23-28.
(b) Houk ll, Johnson SK, Feng J, Houk rS, Johnson dC. electrochemical incineration of benzoquinone in aqueous media
using a quaternary metal oxideelectrode in the absence of a soluble supporting electrolyte. J Appl electrochem 1998;28:
1167-1177.
(c) Bock C, macdougall B. Anodic oxidation of p-benzoquinone and maleic acid. J electrochem 1999;146:2925-2932.
[59] (a) yuan S, Hu S. Characterization and electrochemical studies of Nafion/nano- TiO 2 film modifies electrodes. electrochim Acta
2004;49:4287-4293.
(b) liu Z, Hong l, guo B. Physicochemical and electrochemical characterization of anatase titanium dioxide nanoparticles. J Power
Sources 2005;143:231-235.
(c) rhun vl, garnier e, Pronier S, Alonso-vante N. electrocatalysis on nanoscale ruthenium-based material manufactured by carbonyl
decomposition. electrochem Commun 2000;2:475-479.
[60] luo J, Hepel m. Photoelectrochemical degradation of naphthol blue black diazo dye on WO 3 film electrode. electrochim Acta
2001;46:2913-2922.
[61] li J, Zhang x, Ai Z, Jia F, Zhang l, lin J. efficient visible light degradation of rhodamine B by a photo-electrochemical process based
on a Bi 2 WO 6 nanoplate film electrode. J Phys Chem C 2007;111:6832-6836.
[62] Zhang y, xiong x, Han y, Zhang x, Shen F, deng S, xiao H, yang x, yang g, Peng H. Photoelectrocatalytic degradation of recalcitrant
organic pollutants using TiO 2 film electrodes: an overview. Chemosphere 2012;88:145-154.
[63] yan x, Shi H, Wang d. Photoelectrocatalytic degradation of phenol using a TiO 2 /Ni thin-film electrode. Korean J Chem eng
2003;20:679-684.
[64] Hou y, li x, liu P, Zou x, Chen g, yue P-l. Fabrication and photo-electrocatalytic properties of highly oriented titania nanotube arrays
with {101} crystal face. Sep Purif Technol 2009;67:135-140.
[65] Zhao H, Chen y, Quan x, ruan x. Preparation of Zn-doped TiO 2 nanotubes electrode and its application in pentachlorophenol photo-
electrocatalytic degradation. Chin Sci Bull 2007;52:1456-1461.
[66] li PQ, Zhao gH, Cui x, Zhang yg, Tang yT. Constructing stake structured TiO 2 -NTs/Sb-doped SnO 2 electrode simultaneously with
high electrocatalytic and photocatalytic performance for complete mineralization of refractory aromatic acid. J Phys Chem C
2009;113:2375-2383.
[67] Habibi mH, Talebian N, Choi J-H. Characterization and photocatalytic activity of nanostructured indium tin oxide thin-film electrode
for azo-dye degradation. Thin Solid Films 2006;515:1461-1469.
[68] Hepel m, luo J. Photoelectrochemical mineralization of textile diazo dye pollutants using nanocrystalline WO 3 electrodes. electrochim
Acta 2001;47:729-740.
[69] Zhang d, Pan C, Shi l, mai H, gao x. Controllable synthesis and highly efficient electrocatalytic oxidation performance of SnO 2 /CNT
core-shell structures. Appl Surf Sci 2009;255:4907-4912.
[70] (a) Ting WP, lu mC, Huang yH. The reactor design and comparison of Fenton, electro-Fenton and photoelectro-Fenton processes for
mineralization of benzene sulfonic acid (BSA). J Hazard mater 2008;156:421-427.
(b) dos Santos ACv, masini JC. Applying sequential injection analysis (SiA) and response surface methodology for optimization of
Fenton-based processes. Talanta 2009; 77:1081-1086.
[71] yan J, Tang H, lin Z, Anjum mN, Zhu l. efficient degradation of organic pollutants with ferrous hydroxide colloids as heterogeneous
Fenton-like activator of hydrogen peroxide. Chemosphere 2012;87:111-117.
[72] liu S-Q, Feng l-r, xu N, Chen Z-g, Wang x-m. magnetic nickel ferrite as a heterogeneous photo-Fenton catalyst for the degradation
of rhodamine B in the presence of oxalic acid. Chem eng J 2012;203:432-439.
[73] gajović A, Silva AmT, Segundo rA, Šturm S, Jančar B, Čeh m. Tailoring the phase composition and morphology of Bi-doped goe-
thite-hematite nanostructures and their catalytic activity in the degradation of an actual pesticide using a photo-Fenton-like process.
Appl Catal B environ 2011;103:351-361.
[74] Zhou T, li yZ, Ji J, Wong FS, lu xH. Oxidation of 4-chlorophenol in a heterogeneous zero valent iron/H 2 O 2 Fenton-like system:
kinetic, pathway and effect factors. Sep Purif Technol 2008;62:551-558.
[75] Ortiz de la Plata gB, Alfano Om, Cassano Ae. decomposition of 2-chlorophenol employing goethite as Fenton catalyst. i.
Proposal  of a feasible, combined reaction scheme of heterogeneous and homogeneous reactions. Appl Catal B environ
2010;95:1-13.
Search WWH ::




Custom Search