Environmental Engineering Reference
In-Depth Information
references
[1] Rosicka D, Sembera J. Assessment of influence of magnetic forces on aggregation of zero-valent iron nanoparticles. nanoscale Res Lett
2010;6 (10):6.
[2] Kim DH, Kim J, Choi W. Effect of magnetic field on the zero valent iron induced oxidation reaction. J Hazard Mater
2011;192:928-931.
[3] Dalla VE, Coisson M, Appino C, Vinai F, Sethi R. Magnetic characterisation and interaction modelling of zerovalent iron nanoparticles
for the remediation of contaminated aquifers. J nanosci nanotechnol 2009;9:3210-3218.
[4] Wang Q, Kanei SR, Park H, Ryu A, Choi H. Controllable synthesis, characterisation, and magnetic properties of nano-scale zerovalent
iron with high Brunauer-Emmett-Teller surface area. J nanopart Res 2009;11:749-755.
[5] Huang CP, Wang HW, Chiu PC. nitrate reduction by metallic iron. Water Res 1998;32:2257-2264.
[6] Liou yH, Lo S-L, Lin C-J, Kuan WH, Weng SC. Effects of iron surface pre-treatment on kinetics of aqueous nitrate reduction. J Hazard
Mater 2005;B126:189-195.
[7] Solovyov S, Goldman A. Mass Transport and Reactive Barriers in Packaging: Theory, Applications & Design . Lancaster, PA: DES Tech
Publications Inc.; 2007. p 558.
[8] Crane RA, Scott TB. nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater
2012;211-212:112-125.
[9] noubactep C. Aqueous contaminant removal by metallic iron: is the paradigm shifting? Water SA 2011;37:419-426.
[10] Antia DDJ. Sustainable zero-valent metal (ZVM) water treatment associated with diffusion, infiltration, abstraction and recirculation.
Sustainability 2010;2:2988-3073.
[11] Junyapoon S. Use of zero-valent iron for waste water treatment. KMITL Sci Technol J 2005;5:587-595.
[12] Zhang W-X. nanoscale iron particles for environmental remediation: an overview. J nanopart Res 2003;5:323-332.
[13] Ma L, Zhang W-X. Enhanced biological treatment of industrial waste water with bi-metallic zero-valent iron. Environ Sci Technol
2008;42:5384-5389.
[14] Comfort SD, Shea PJ, Machacek TA, Satapanajaru T. Pilot-scale treatment of RDX-contaminated soil with zerovalent iron. J Environ
Qual 2003;32:1717-1725.
[15] Loraine G, Burris D, Li L, Schoolfield J. Mass transfer effects on kinetics of dibromoethane reduction by zero valent iron in packed-bed
reactors. J Environ Eng 2002;128:85-93.
[16] Zang y, Jing y, Quan X, Liu y, Onu P. A built-in zerovalent iron anaerobic reactor to enhance treatment of azo dye waste water. J Water
Sci Technol 2011;63:741-746.
[17] Gavaskar A, Tatar L, Condit W. Cost and performance report: nanoscale zero-valent iron technologies for source remediation . nAVFAC
naval Facilities Engineering Command. Contract Report CR-05-007-EnV. Port Hueneme: Engineering Service Center; 2005. p 44.
[18] Henderson AD, Demond AH. Impact of solids formation and gas production on the permeability of ZVI PRBs. J Environ Sci
2011;137:689-696.
[19] Jeen SW, Amos RT, Blowes DW. Modelling gas formation and mineral precipitation in a granular iron column. Environ Sci Technol
2012;46:6742-6749.
[20] Antia DDJ. Formation and control of self-sealing high permeability groundwater mounds in impermeable sediment: implications for
SUDS and sustainable pressure mound management. Sustainability 2009;1:855-923.
[21] Antia DDJ. Polymerisation theory—formation of hydrocarbons in sedimentary strata (hydrates, clays, sandstones, carbonates, evapo-
rates, volcanoclastics) from CH 4 and CO 2 : parts I to IV. Indian J Petrol Geol 2009;17(1):49-86; 2009;17(2):11-70; 2010;18(1):1-50;
2011;18(2):1-45.
[22] Antia DDJ. Interpretation of overland flow associated with infiltration devices placed in boulder clay and construction fill. In: Wong
TSW, editor. Overland flow and surface runoff . new york: nova Science Publishers; 2012. p 211-285.
[23] Antia DDJ. Interacting infiltration devices (field analysis, experimental observation and numerical modeling): prediction of seepage
(overland flow) locations, mechanisms and volumes—implications for SUDS, groundwater raising projects and carbon sequestration
projects. In: Hirsch G, Kappel B, editors. Hydraulic Engineering: Structural Applications, Numerical Modeling and Environmental
Impacts . new york: nova Science Publishers; 2011. p 85-156.
[24] Westerhof P, James J. nitrate removal in zero-valent iron packed columns. Water Res 2003;37:1818-1830.
[25] Chen yM, Li CW, Chen SS. Fluidized zero valent iron bed for nitrate removal. Chemosphere 2005;59:753-759.
[26] Hsu J-C, Liao C-H, Wei y-L. nitrate removal by synthetic nanoscale zero-valent iron in aqueous recirculated reactor. Sustain Environ
Res 2011;21:353-359.
[27] Ji MK, Park WB, Khan MA, Abou-Shanab RA, Kim y, Cho y, Choi J, Song H, Jeon BH. nitrate and ammonium ions removal from
groundwater by a hybrid system of zero-valent iron combined with absorbents. J Environ Monit 2012;14:1153-1158.
Search WWH ::




Custom Search