Environmental Engineering Reference
In-Depth Information
[10] (a) Hoffmann mr, martin ST, Choi W, Bahnemann d. environmental applications of semiconductor photocatalysis. Chem rev
1995;95:69-96.
(b) Kamat Pv. Tailoring nanostructured thin films. Chemtech 1995:22-28.
[11] Beydoun d, Amal r, low g, mcevoy S. role of nanoparticles in photocatalysis. J Nanopart res 1999;1:439-458.
[12] Wang C-C, Zhang Z, ying Jy. Photocatalytic decomposition of halogenated organics over nanocrystalline titania. Nanostruct mater
1997;9:583-586.
[13] Zhang Z, Wang C-C, Zakaria r, ying Jy. role of particle size in nanocrystalline TiO 2 -based photocatalysts. J Phys Chem B
1998;102:10871-10878.
[14] (a) Fischer C-H, lillie J, Weller H, Katsikas l, Henglein A. Photochemistry of colloidal semiconductors. 29. Fractionation of CdS sols
of small particles by exclusion chromatography. Ber Bunsenges Phys Chem 1989;93:61-64.
(b) Howe rF. recent developments in photocatalysis. dev Chem eng mineral Process 1998;6 (1):55-84.
[15] Henderson mA. A surface science perspective on TiO 2 photocatalysis. Surf Sci rep 2011;66:185-297.
[16] lee K, lee NH, Shin SH, lee Hg, Kim SJ. Hydrothermal synthesis and photocatalytic characterizations of transition metals doped nano
TiO 2 sols. mater Sci eng B 2006;129:109-115.
[17] Salmi m, Tkachenko N, lamminmaki rJ, Karvinen S, vehmanen v, lemmetyinen H. Femtosecond to nanosecond spectroscopy of
transition metal-doped TiO 2 particles. J Photochem Photobiol A Chem 2005;175:8-14.
[18] Choi W, Termin A, Hoffmann mr. The role of metal ion dopants in quantum-sized TiO 2 : correlation between photoreactivity and charge
carrier recombination dynamics. J Phys Chem B 1994;98:13669-13679.
[19] (a) emeline Av, Kuznetsov vN, rybchuk vK, Serpone N. visible-light-active titania photocatalysts: the case of N-doped TiO 2 s—prop-
erties and some fundamental issues. int J Photoenergy 2008;2008:1-19.
(b) di Paola A, garcía-lópez e, marcì g, Palmisano l. A survey of photocatalytic materials for environmental remediation. J Hazard
mater 2012;211-212:3-29.
[20] yates Hm, Nolan mg, Sheel dW, Pemble me. The role of nitrogen doping on the development of visible light-induced photocatalytic
activity in thin TiO 2 films grown on glass by chemical vapour deposition. J Photochem Photobiol A Chem 2006;179:213-223.
[21] Bedja i, Kamat Pv. Capped semiconductor colloids. Synthesis and photoelectrochemical behaviour of TiO 2 -capped SnO 2 nanocrystal-
lites. J Phys Chem 1995;99:9182-9188.
[22] mews A, eychmuller A, giersig m, Schooss d, Weller H. Preparation, characterization, and photophysics of the quantum dot quantum
well system CdS/HgS/CdS. J Phys Chem 1994;98:934-941.
[23] Braun Pv, Osenar P, Stup S-i. Semiconducting superlattices templated by molecular assemblies. Nature 1996;380 (6572):325-328.
[24] Tenne r. Fullerene-like structures and nanotubes from inorganic compounds. endeavour 1996;20 (3):97-104.
[25] (a) liu Z, Zhang x, Nishimoto S, Jin m, Tryk dA, murakami T, Fujishima A. Highly ordered TiO 2 nanotube arrays with controllable
length for photoelectrocatalytic degradation of phenol. J Phys Chem C 2008;112:253-259.
(b) Zhuang H, lin C, lai y, Sun l, li J. Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity.
environ Sci Technol 2007;41:4735-4740.
(c) xu H, vanamu g, Nie Z, Konishi H, yeredla r, Phillips J, Wang y. Photocatalytic oxidation of a volatile organic component of acet-
aldehyde using titanium oxide nanotubes. J Nanomater 2006;2006:1-8.
(d) macak Jm, Zlamal m, Krysa J, Schmuki P. Self-organized TiO 2 nanotube layers as highly efficient photocatalysts. Small
2007;3:300-304.
(e) lai y, Sun l, Chen y, Zhuang H, lin C, Chin JW. effects of the structure of TiO 2 nanotube array on Ti substrate on its photocatalytic
activity. J electrochem Soc 2006;153:d123-d128.
(f) Tan lK, Kumar mK, An WW, gao H. Transparent, well-aligned TiO 2 nanotube arrays with controllable dimensions on glass
substrates for photocatalytic applications. ACS Appl mater interfaces 2010;2:498-503.
[26] liu Z, Zhang x, Nishimoto S, murakami T, Fujishima A. efficient photocatalytic degradation of gaseous acetaldehyde by highly
ordered TiO 2 nanotube arrays. environ Sci Technol 2008;42:8547-8551.
[27] (a) Fu P, Zhang P. enhanced photoelectrochemical properties and photocatalytic activity of porous TiO 2 films with highly dispersed
small Au nanoparticles. Thin Solid Films 2011;519:3480-3486.
(b) liang H-C, li x-Z. effects of structure of anodic TiO 2 nanotube arrays on photocatalytic activity for the degradation of
2,3-dichlorophenol in aqueous solution. J Hazard mater 2009; 162:1415-1422.
[28] Hagfeldt A, gratzel m. light-induced redox reactions in nanocrystalline systems. Chem rev 1995;95:49-68.
[29] (a) Kamat Pv. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 2002; 106: 7729-7744.
(b) eustis S, el-Sayed mA. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and
its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc rev 2006;35:209-217.
[30] Wang P, Huang B, Qin x. Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew Chem int ed engl
2008;47:7931-7933.
[31] Chen x, Zheng Z, Ke x. Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation. green Chem
2010;12:414-419.
Search WWH ::




Custom Search