Environmental Engineering Reference
In-Depth Information
[34] Van der Bruggen B, lejon l, Vandecasteele C. Reuse, treatment, and discharge of the concentrate of pressure-driven membrane
processes. Environ Sci Technol 2003;37:3733-3738.
[35] Mohsen MS, Jaber Jo, Afonso MD. Desalination of brakish water by nanofiltration and reverse osmosis. Desalination 2003;157:167.
[36] Peltier S, Cotte E, Gatel D, Herremans l, Cavard J. Nanofiltration improvements of water quality in a large distribution system. Water
Sci Technol 2003;3:193-200.
[37] Modise CM, Bendick JA, Miller CJ, Neufeld RD, Vidic RD. Use of hydrophilic and hydrophobic microfiltration membranes to remove
microorganisms and organic pollutants from primary effluents. Water Environ Res 2006;78:557-564.
[38] Srivastava A, Srivastava oN, Talapatra S, Vajtai R, Ajayan PM. Carbon nanotube filters. Nature Mater 2004;3:610-614.
[39] DeFriend KA, Wiesner MR, Barron AR. Alumina and aluminate ultrafiltration membranes derived from alumina nanoparticles. J Membr
Sci 2003;224:11-28.
[40] Stanton BW, Harris JJ, Miller MD, Bruening Ml. Ultrathin, multilayered polyelectrolyte films as nanofiltration membranes. langmuir
2003;19:7038-7042.
[41] Mallampati R, Valiyaveettil S. Biomimetic metal oxides for the extraction of nanoparticles from water. Nanoscale 2013;5:3395-3399.
[42] U.S. EPA. Permeable reactive barriers technologies for contaminant remediation. Remedial Technology Development Forum report.
Washington, DC: U.S. Environmental Protection Agency; 1998. Report nr EPA/600/R-98/125.
[43] U.S. EPA. Cleaning up the nation's waste sites: markets and technology trends. Washington, DC: U.S. Environmental Protection Agency;
2004. Report nr EPA 542-R-04-015.
[44] lin Y, Fryxell GE, Wu H, Engelhard M. Selective sorption of cesium using self-assembled monolyaers on mesoporous supports. Environ
Sci Technol 2001;35:3962-3966.
[45] U.S. EPA. Use of monitored natural attenuation at superfund, RCRA corrective action, and underground storage tank sites. oSWER
Directive 9200.4-17. Washington, DC: U.S. Environmental Protection Agency; 1997.
[46] Rickerby DG, Morrison M. Nanotechnology and the environment: a European perspective. Sci Technol Adv Mater 2007;8:19-24.
[47] Saleh N, Sirk K, liu Y, Phenrat T. Surface modifications enhance nano iron transport and NAPl targeting in saturated porous media.
Environ Eng Sci 2007;24:45-57.
[48] Hydutsky BW, Mack EJ, Beckerman BB, Skluzacek JM, Mallouk TE. optimization of nano- and micro iron transport through sand
columns using polyelectrolyte mixtures. Environ Sci Technol 2007;41:6418-6424.
[49] Zhang WX. Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 2003;5:323-332.
[50] quinn J, Geiger C, Clausen C, Brooks C, Coon K. Field demonstration of DNAPl dehalogenation using emulsified zero-valent iron.
Environ Sci Technol 2005;39:1309-1318.
[51] otto M, Floyd M, Bajpai S. Nanotechnology for site remediation. Remediation 2008;19:99-108.
[52] Hara o, Krug S, quinn TJ, Clausen C, Geiger C. Field and laboratory evaluation of the treatment of DNAPl source zones using emul-
sified zero-valent iron. Remediation 2006;16:35-56.
[53] Zhang WX, Elliot DW. Applications of iron nanoparticle in ground water remediation. Remediation 2006;16:7-21.
[54] Nutt Mo, Heck KN, Alvarez P, Wong MS. Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous phase trichloroethane
hydrodechlorination. Appl Catal B 2006;69:115-125.
[55] okinaka K, Jasdanian A, Shimizu H, okita T, Kakuya K. Treatment of 1,1,1-trichloroethane with reactive nanoscale iron products in
simulated groundwater. Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds;
Paper 2E-01. Columbus: Battelle Memorial Institute; 2004.
[56] Wang CB, Zhang WX. Synthesizing nano scale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci
Technol 1997;31:2154-2156.
Search WWH ::




Custom Search