Environmental Engineering Reference
In-Depth Information
[58] belmabkhout Y, Serna-Guerrero R, Sayari A. Adsorption of CO 2 containing gas mixtures over amine-bearing pore-expanded mCm-41
silica: application for gas purification. Ind Eng Chem Res 2009;49:359−365.
[59] Uchoa b, Lin CY, Castro Neto AH. Tailoring graphene with metals on top. phys Rev b 2008;77:035420.
[60] Wehling TO, Novoselov KS, morozov SV, Vdovin EE, Katsnelson mI, Geim AK, Lichtenstein AI. molecular doping of graphene. Nano
Lett 2008;8:173.
[61] martins Tb, miwa RH, da Silva AJR, Fazzio A. Electronic and transport properties of boron-doped graphene nanoribbons. phys Rev
Lett 2007;98:196803.
[62] Das A, Chakraborth b, Sood AK. Raman spectroscopy of graphene on different substrates and influence of defects. mater Sci b
2008;31:579.
[63] AlZahrani AZ. First-principles study on the structural and electronic properties of graphene upon benzene and naphthalene adsorption.
Appl Surf Sci 2010;257:807.
[64] Liu ZK, Li JH, Sun ZH, Tai GA, Lau Sp, Yan F. The application of highly doped single-layer graphene as the top electrodes of
semitransparent organic solar cells. ACS Nano 2012;6:810-818.
[65] Hui YY, Tai GA, Sun ZH, xu ZH, Wang N, Yan F, Lau Sp. n- and p-Type modulation of ZnO nanomesh coated graphene field effect
transistors. Nanoscale 2012;4:3118-3122.
[66] Ghosh A, Subrahmanyam KS, Krishna KS, Datta S, Govindaraj A, pati SK, Rao CNR. Uptake of H 2 and CO 2 by graphene.
J phys Chem C 2008;112:15704.
[67] Wang L, Lee K, Sun YY, Lucking m, Chen Z, Zhao JJ, Zhang Sb. Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano
2009;3:2995.
[68] mishra AK, Ramaprabhu S. Carbon dioxide adsorption in graphene sheets. AIp Adv 2011;1:032152.
[69] Siriwardane RV, Shen m, Fisher Ep, poston J. Adsorption of CO 2 on molecular sieves and activated carbon. Energ Fuel 2001;15:279.
[70] Gensterblum Y, van Hemert p, billemont p, busch A, Charrière D, Li D, Krooss bm, deWeireld G, prinza D, Wolf KHAA. European
inter-laboratory comparison of high pressure CO 2 sorption isotherms. I: activated carbon. Carbon 2009;47:2958.
[71] Zhang Z, xu m, Wang H, Li Z. Enhancement of CO 2 adsorption on high surface area activated carbon modified by N 2 , H 2 and ammonia.
Chem Eng J 2010;160:571.
[72] Cavenati S, Grande CA, Rodrigues AE. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13x at high
pressures. Chem Eng J 2004;49:1095.
[73] Si Y, Samulski E. Exfoliated graphene separated by platinum nanoparticles. Chem mater 2008;20:6792-6797.
[74] Williams G, Seger b, Kamat p. TiO 2 UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008;2:1487-1491.
[75] Scheuermann G, Rumi L, Steurer p, bannwarth W, mülhaupt R. palladium nanoparticles on graphite oxide and its functionalized
graphene derivatives as highly active catalysts for the Suzuki-miyaura coupling reaction. J Am Chem Soc 2009;131:8262-8270.
[76] Zhou D, Han bH. Graphene-based nanoporous materials assembled by mediation of polyoxometalate nanoparticles. Adv Funct mater
2010;20:2717-2722.
[77] paek S, Yoo E, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO 2 /graphene nanoporous electrodes with
three-dimensionally delaminated flexible structure. Nano Lett 2009;9:72-75.
[78] Zhu Y, murali S, Cai W, Li x, Suk JW, potts JR, Ruoff RS. Graphene and graphene oxide: synthesis, properties, and applications. Adv
mater 2010;22:3906-3924.
[79] Wei D, Liu Y. Controllable synthesis of graphene and its applications. Adv mater 2010;22:3225-3241.
[80] Cazorla C, Shevlin SA, Guo Zx. Calcium-based functionalization of carbon materials for CO 2 capture: a first-principles computational
study. J phys Chem C 2011;115:10990.
[81] Carrillo I, Rangel E, magana LF. Adsorption of carbon dioxide and methane on graphene with a high titanium coverage. Carbon
2009;47:2758.
[82] Zhou D, Liu q, Cheng qY, Cheng qY, Zhao YC, Cui Y, Wang T, Han b. Graphene-manganese oxide hybrid porous material and its
application in carbon dioxide adsorption. Chin Sci bull 2012;57:3059-3064.
[83] Kai T, Kazama S, Fujioka Y. Development of cesium-incorporated carbon membranes for CO 2 separation under humid conditions.
J memb Sci 2009;342:14-21.
[84] Fujioka Y, Yamada K, Kazama S, Yogo K, Kai T, Uoe K. Development of innovative gas separation membranes through sub-nanoscale
materials control. Research Institute of Innovative Technology for the Earth (RITE) [Online]: Tokyo, Japan; 2009. Available at http://
gcep.stanford.edu/pdfs/E2aAjl5DtYbmHJN7TWaibg/2.4.5.Fujioka_07_web.pdf Accessed June 2, 2014.
[85] Shan m, xue q, Jing N, Ling C, Zhang T, Yan Z, Zheng J. Influence of chemical functionalization on the CO 2 /N 2 separation performance
of porous graphene membranes. Nanoscale 2012;4:5477-5482.
Search WWH ::




Custom Search