Environmental Engineering Reference
In-Depth Information
[134] Sanyal A, Rautaray D, Bansal V, Ahmad A, Sastry M. Heavy-metal remediation by a fungus as a means of production of lead and
cadmium carbonate crystals. langmuir 2005;21 (16):7220-7224.
[135] Rautaray D, Ahmad A, Sastry M. Biological synthesis of metal carbonate minerals using fungi and actinomycetes. J Mater chem
2004;14 (14):2333-2340.
[136] ehrlich Hl. How microbes influence mineral growth and dissolution. chem Geol 1996;132 (1-4):5-9.
[137] Munch Jc, Ottow JcG. Preferential reduction of amorphous to crystalline iron oxides by bacterial activity. Soil Sci 1980;129
(1):15-21.
[138] Natarajan KA. Biogeochemistry of Rivers in Tropical South and South East Asia . Hamburg: Heft 82, Geologisch-Paläontologisches
Inst. und Inst. für Biogeochemie und Meereschemie der Univ. Hamburg; 1999.
[139] Bansal V, Sanyal A, Rautaray D, Ahmad A, Sastry M. Bioleaching of sand by the fungus, Fusarium oxysporum as a means of producing
extracellular silica nanoparticles. Adv Mater 2005;17 (7):889-892.
[140] Bansal V, Ahmad A, Sastry M. Fungus-mediated biotransformation of amorphous silica in rice husk to nanocrystalline silica. J Am
chem Soc 2006;128 (43):14059-14066.
[141] cobbett c, Goldsborough P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant
Biol 2002;53 (1):159-182.
[142] Hirata K, Tsuji N, Miyamoto K. Biosynthetic regulation of phytochelatins, heavy metal-binding peptides. J Biosci Bioeng 2005;100
(6):593-599.
[143] Robinson NJ, Whitehall SK, cavet JS. Microbial metallothioneins. In: Advances in Microbial Physiology . Volume 44, london:
Academic Press; 2001. p 183-213.
[144] Park TJ, lee Sy, Heo NS, Seo TS. In vivo synthesis of diverse metal nanoparticles by recombinant escherichia coli. Angew chem Int
ed 2010;49 (39):7019-7024.
Search WWH ::




Custom Search