Environmental Engineering Reference
In-Depth Information
[79] Klaus-Joerger T, Joerger R, Olsson e, Granqvist c-G. Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad
Sci USA 1999;96 (24):13611-13614.
[80] Ramanathan R, O'Mullane AP, Parikh Ry, Smooker PM, Bhargava SK, Bansal V. Bacterial kinetics-controlled shape-directed biosyn-
thesis of silver nanoplates using Morganella psychrotolerans. langmuir 2010;27 (2):714-719.
[81] Klaus-Joerger T, Joerger R, Olsson e, Granqvist c-G. Bacteria as workers in the living factory: metal-accumulating bacteria and their
potential for materials science. Trends Biotechnol 2001;19 (1):15-20.
[82] Gupta A, Matsui K, lo JF, Silver S. Molecular basis for resistance to silver cations in Salmonella. Nat Med 1999;5 (2):183-188.
[83] Parikh Ry, Ramanathan R, coloe PJ, Bhargava SK, Patole MS, Shouche yS, Bansal V. Genus-wide physicochemical evidence of extra-
cellular crystalline silver nanoparticles biosynthesis by Morganella spp. PloS One 2011;6 (6):e21401.
[84] Parikh Ry, Singh S, Prasad BlV, Patole MS, Sastry M, Shouche yS. extracellular synthesis of crystalline silver nanoparticles and
molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. chemBiochem
2008;9 (9):1415-1422.
[85] Ramanathan R, Field MR, O'Mullane AP, Smooker PM, Bhargava SK, Bansal V. Aqueous phase synthesis of copper nanoparticles: a
link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale 2013;5 (6):2300-2306.
[86] Mott D, Galkowski J, Wang l, luo J, Zhong c-J. Synthesis of size-controlled and shaped copper nanoparticles. langmuir 2007;23
(10):5740-5745.
[87] Park BK, Jeong S, Kim D, Moon J, lim S, Kim JS. Synthesis and size control of monodisperse copper nanoparticles by polyol method.
J colloid Interface Sci 2007;311 (2):417-424.
[88] yong P, Rowson NA, Farr JPG, Harris IR, Macaskie le. Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuri-
cans NcIMB 8307. Biotechnol Bioeng 2002;80 (4):369-379.
[89] Baxter-Plant VS, Mikheenko IP, Macaskie le. Sulphate-reducing bacteria, palladium and the reductive dehalogenation of chlorinated
aromatic compounds. Biodegradation 2003;14 (2):83-90.
[90] lloyd JR, yong P, Macaskie le. enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl environ
Microbiol 1998;64 (11):4607-4609.
[91] Konishi y, Ogi T, Saito N. Room temperature synthesis and their applications of noble metal nanoparticles by metal ion-reducing
bacteria. J Japan Soc Powder Powder Metall 2010;57 (7):508-513.
[92] Murray cB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse cde (e = sulfur, selenium, tellurium)
semiconductor nanocrystallites. J Am chem Soc 1993;115 (19):8706-8715.
[93] Oremland RS, Herbel MJ, Blum JS, langley S, Beveridge TJ, Ajayan PM, Sutto T, ellis AV, curran S. Structural and spectral features
of selenium nanospheres produced by Se-respiring bacteria. Appl environ Microbiol 2004;70 (1):52-60.
[94] Baesman SM, Bullen TD, Dewald J, Zhang D, curran S, Islam FS, Beveridge TJ, Oremland RS. Formation of tellurium nanocrystals
during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors. Appl environ Microbiol 2007;73
(7):2135-2143.
[95] Soni SK, Ramanathan R, coloe PJ, Bansal V, Bhargava SK. Self-assembled enzyme capsules in ionic liquid [BMIM][BF 4 ] as templat-
ing nanoreactors for hollow silica nanocontainers. langmuir 2010;26 (20):16020-16024.
[96] Wang y, Bansal V, Zelikin AN, caruso F. Templated synthesis of single-component polymer capsules and their application in drug
delivery. Nano lett 2008;8 (6):1741-1745.
[97] Nicollian eH, Brews JR. MOS Physics and Technology . New york: Wiley-Interscience; 1982. p 920.
[98] Kröger N, Deutzmann R, Bergsdorf c, Sumper M. Species specific polyamines from diatoms control silica morphology. Proc Natl
Acad Sci USA 2000;97 (26):14133-14138.
[99] Perry c, Keeling-Tucker T. Biosilicification: the role of the organic matrix in structure control. J Biol Inorg chem 2000;5
(5):537-550.
[100] Shimizu K, cha J, Stucky GD, Morse De. Silicatein a: cathepsin l-like protein in sponge biosilica. Proc Natl Acad Sci USA 1998;95
(11):6234-6238.
[101] Swift DM, Wheeler AP. evidence of an organic matrix from diatom biosilica. J Phycol 1992;28 (2):202-209.
[102] Milligan AJ, Morel FMM. A proton buffering role for silica in diatoms. Science 2002;297 (5588):1848-1850.
[103] Morse De. Silicon biotechnology: harnessing biological silica production to construct new materials. Trends Biotechnol 1999;17
(6):230-232.
[104] Perry cc, Keeling-Tucker T. Model studies of colloidal silica precipitation using biosilica extracts from equisetum telmateia. colloid
Polym Sci 2003;281 (7):652-664.
[105] Ramanathan R, campbell Jl, Soni SK, Bhargava SK, Bansal V. cationic amino acids specific biomimetic silicification in ionic liquid:
a quest to understand the formation of 3-D structures in diatoms. PloS One 2011;6 (3):e17707.
[106] Schultz TF, egerton-Warburton l, crawford SA, Wtherbee R. Identification of a 41 kDa protein embedded in the biosilica of scales
and bristles isolated from Mallomonas splendens (Synurophyceae, Ochrophyta). Protist 2001;152 (4):315-327.
Search WWH ::




Custom Search