Environmental Engineering Reference
In-Depth Information
organisms. likewise, the surface chemistry of biosynthesized nanoparticles still requires substantial understanding. As shown
in a few investigations [80, 85], the important role of metal resistance in an organism's ability to synthesize nanomaterials
would have significant potential to employ a rational approach for nanoparticle biosynthesis. Additionally, only recently
engineered organisms modified to over-express phytochelatins and metallothionein (that are known to bind to metal ions) have
been employed for the synthesis of a range of important nanomaterials [144], a strategy that requires serious investigation.
lastly, the commercial applicability for the large-scale synthesis of inorganic nanomaterials using a biosynthesis approach is
yet to be seen. An understanding of the important questions of the mechanism and surface chemistry will enable this approach
to be used on an industrial scale for the synthesis of inorganic nanomaterials.
referenceS
[1] Feynman RP. There's plenty of room at the bottom. J Microelectromech Syst 1992;1 (1):60-66.
[2] cao yc, Jin R, Mirkin cA. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002;297
(5586):1536-1540.
[3] Kang B, Mackey MA, el-Sayed MA. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis
arrest and apoptosis. J Am chem Soc 2010;132 (5):1517-1519.
[4] Nassif N, Roux c, coradin T, Bouvet OMM, livage J. Bacteria quorum sensing in silica matrices. J Mater chem 2004;14
(14):2264-2268.
[5] Plowman B, Ippolito SJ, Bansal V, Sabri yM, O'Mullane AP, Bhargava SK. Gold nanospikes formed through a simple electrochemical
route with high electrocatalytic and surface enhanced Raman scattering activity. chem commun 2009;33:5039-5041.
[6] Sawant PD, Sabri yM, Ippolito SJ, Bansal V, Bhargava SK. In-depth nano-scale analysis of complex interactions of Hg with gold
nanostructures using AFM-based power spectrum density method. Phys chem chem Phys 2009;11 (14):2374-2378.
[7] Tian l, yam l, Wang J, Tat H, Uhrich Ke. core crosslinkable polymeric micelles from PeG-lipid amphiphiles as drug carriers. J Mater
chem 2004;14 (14):2317-2324.
[8] Schmid G, corain B. Nanoparticulated gold: syntheses, structures, electronics, and reactivities. eur J Inorg chem 2003;2003
(17):3081-3098.
[9] Bansal V, Bharde A, Ramanathan R, Bhargava SK. Inorganic materials using 'unusual' microorganisms. Adv colloid Interface Sci
2012;179-182:150-168.
[10] Bansal V, Ramanathan R, Bhargava SK. Fungus-mediated biological approaches towards 'green' synthesis of oxide nanomaterials.
Aust J chem 2011;64 (3):279-293.
[11] Dhillon GS, Brar SK, Kaur S, Verma M. Green approach for nanoparticle biosynthesis by fungi: current trends and applications. crit
Rev Biotechnol 2012;32 (1):49-73.
[12] Thakkar KN, Mhatre SS, Parikh Ry. Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 2010;6
(2):257-262.
[13] Sastry M, Ahmad A, Khan MI, Kumar R. Microbial nanoparticle production. In: Niemeyer cM, Mirkin cA, editors. Nanobiotechnology .
Weinheim: Wiley-VcH Verlag GmbH & co. KGaA; 2004. p 126-135.
[14] lowenstam H. Minerals formed by organisms. Science 1981;211 (4487):1126-1131.
[15] Simkiss K, Wilbur KM. Biomineralization . New york: Academic Press; 1991.
[16] Frankel RB, Blakemore RP. Iron Biominerals . Plenum Press: Springer; 1991.
[17] Philipse AP, Maas D. Magnetic colloids from magnetotactic bacteria: chain formation and colloidal stability. langmuir 2002;18
(25):9977-9984.
[18] Kröger N, Deutzmann R, Sumper M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science
1999;286 (5442):1129-1132.
[19] Parkinson J, Gordon R. Beyond micromachining: the potential of diatoms. Trends Biotechnol 1999;17 (5):190-196.
[20] Schultze-lam S, Harauz G, Beveridge T. Participation of a cyanobacterial S-layer in fine-grain mineral formation. J Bacteriol 1992;174
(24):7971-7981.
[21] Stolz JS, Basu PB, Oremland RO. Microbial transformation of elements: the case of arsenic and selenium. Int Microbiol 2002;5
(4):201-207.
[22] Bruins MR, Kapil S, Oehme FW. Microbial resistance to metals in the environment. ecotoxicol environ Saf 2000;45 (3):198-207.
[23] Trevors JT, Oddie KM, Belliveau BH. Metal resistance in bacteria. FeMS Microbiol. lett 1985;32 (1):39-54.
[24] Mehra RK, Winge DR. Metal ion resistance in fungi—molecularmechanisms and their regulated expression. J cell Biochem 1991;45
(1):30-40.
Search WWH ::




Custom Search