Environmental Engineering Reference
In-Depth Information
[87] Taylor U, Garrels W, Petersen S, Kues W, Lucas-Hahn A, Barcikowski S, Rath d. 149 unimpaired development of murine embryos
after injection of silver nanoparticles. Reprod Fertil dev 2012;25 (1):222-223.
[88] Sriram MI, BarathManiKanth S, Kalishwaralal K, Gurunathan S. Antitumor activity of silver nanoparticles in dalton's lymphoma
ascites tumor model. Int J Nanomedicine 2010;3:1-10.
[89] Sahoo SK, Labhasetwar v. Nanotech approaches to drug delivery and imaging. drug discov Today 2003;8:1112-1120.
[90] Fahmy TM, Fong PM, Goyal A, Saltzman WM. Targeted for drug delivery. Nanotoday 2005:18-26.
[91] Fahmy TM, Samstein RM, Harness CC, Saltzman WM. Surface modification of biodegradable polyesters with fatty acid conjugates
for improved drug targeting. Biomaterials 2005;26:5727-5736.
[92] Couvreur P, Barratt G, Fattal E, Legrand P, vauthier C. Nanocapsule technology: a review. Crit Rev Ther drug Carrier Syst
2002;19:99-134.
[93] Åkerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc Natl Acad Sci USA
2002;99:12617-12624.
[94] Makarova Ov, Ostafin AE, Miyoshi H, Norris JR, Meisel d. Adsorption and encapsulation of fluorescent probes in nanoparticles.
J Phys Chem B 1999;103:9080-9084.
[95] Wang H, Zhang y, yu H, Wu d, Ma H, Li H, du B, Wei Q. Label-free electrochemical immunosensor for prostate specific antigen
based on silver hybridized mesoporous silica nanoparticles. Anal Biochem 2013;434 (1):123-127.
[96] Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview Structure, regulation, and clinical implications. Neurobiol
dis 2004;16:1-13.
[97] Brightman M. Ultrastructure of the brain endothelium. In: Bradbury MW, editor. Physiology and Pharmacology of the Blood-Brain
Barrier Handbook of Experimental Pharmacology . volume 103, Berlin: Springer; 1992. p 1-22.
[98] Begley d. The blood-brain barrier: principles for targeting peptides and drugs to the central nervous system. J Pharm Pharmacol
1996;48:136-146.
[99] davson H, Segal M. Physiology of the CSF and Blood-Brain Barrier . Boca Raton: CRC Press; 1996. p 1-192.
[100] Alyautdin R, Gothier d, Petrov v, Kharkevich d, Kreuter J. Analgesic activity of the hexapeptide dalargin adsorbed on the surface of
polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm 1995;41:44-48.
[101] Kreuter J, Alyautdin RN, Kharkevich dA, Ivanov AA. Passage of peptides through the blood-brain barrier with colloidal polymer par-
ticles (nanoparticles). Brain Res 1995;674:171-174.
[102] Kreuter J, Petrov vE, Kharkevich dA, Alyautdin RN. Influence of the type of surfactant on the analgesic effects induced by the peptide
dalargin after its delivery across the blood-brain barrier using surfactant-coated nanoparticles. J Control Release 1997;49:81-87.
[103] Schro¨der U, Sabel BA. Nanoparticles, a drug carrier system to pass the blood-brain barrier, permit central analgesic effects of i.v.
dalargin injections. Brain Res 1996;710:121-124.
[104] Schroeder U, Sommerfeld P, Sabel BA. Efficacy of oral dalargin-loaded nanoparticle delivery across the blood-brain barrier. Peptides
1998b;19:777-780.
[105] Schroeder U, Sommerfeld P, Ulrich S, Sabel BA. Nanoparticle technology for delivery of drugs across the blood-brain barrier. J Pharm
Sci 1998a;87:1305-1307.
[106] Ramge P, Kreuter J, Lemmer B. Circadian phasedependent antinociceptive reaction in mice after i.v. injection of dalargin-loaded
nanoparticles determined by the hot-plate test and the tail-flick test. Chronobiol Int 1999;17:767-777.
[107] Ullrich NJ, Pomeroy SL. Pediatric brain tumors. Neurol Clin 2003;21:897-913.
[108] Kreuter J, dmitry S, valery P, Peter R, Klaus C, Claudia KB, Renad A. Apolipoprotein-mediated transport of nanoparticle-bound drugs
across the blood-brain barrier. J drug Target 2002;10 (4):317-325.
[109] diallo MS, Christie S, Swaminathan P, Johnson JH, Goddard WA. dendrimer enhanced ultra-filtration recovery of Cu (II) fromaque-
ous solutions using Gx-NH2-PAMAM dendrimers with ethylene diamine core. Environ Sci Technol 2005;39:1366-1377.
[110] Momba MNB, Kaleni P. Regrowth and survival of indicator microorganisms on the surfaces of household containers used for the
storage of drinking water in rural communities of South Africa. Water Res 2002;36:3023-3028.
[111] Edberg SC, Rice EW, Karlin RJ, Allen MJ. Escherichia coli : the best biological drinking water indicator for public health protection.
Symp Ser Soc Appl Microbiol 2000;88:S106-S116.
[112] Enriquez C, Nwachuku N, Gerba CP. direct exposure to animal enteric pathogens. Rev Environ Health 2001;16:117-131.
[113] Momba MNB, Notshe TL. The microbiological quality of groundwater-derived drinking water after long storage in household con-
tainers in a rural community of South Africa. J Water Supply Res Technol 2003;52:67-77.
[114] Momba MNB, Malakate vK, Theron J. Abundance of phathogenic Escherichia coli, Salmonella typhimurium and vibrio cholerae in
Nkonkobe drinking water sources. J Water Health 2006;4:289-296.
[115] US Environmental Protection Agency. Microbial and disinfection by-product rules. Federal Register 1998b;63:69389-69476.
[116] droste RL. Theory and practice of water and wastewater treatment . New york: John Wiley and Sons; 1997.
Search WWH ::




Custom Search