Environmental Engineering Reference
In-Depth Information
[90] cason JP, Khambaswadkar K, Roberts cB. supercritical fluid and compressed solvent effects on metallic nanoparticle synthesis in
reverse micelles. Ind eng chem Res 2000;39:4749-4755.
[91] cansell F, chevalier B, demourgues A, etourneau J, even c, Pessey V, Petit s, Tressaud A, Weill F. supercritical fluid processing: a
new route for materials synthesis. J Mater chem 1999;9:67-75.
[92] sue K, suzuki M, Arai K, ohashi T, Ura h, Matsui K, hakuta y, hayashi h, Watanabe M, hiaki T. size-controlled synthesis of metal
oxide nanoparticles with a flow-through supercritical water method. Green chem 2006;8:634-638.
[93] desmoulins-Krawiec s, Aymonier c, loppinet-serani A, Weill F, Gorsse s, etourneau J, cansell F. synthesis of nanostructured mate-
rials in supercritical ammonia: nitrides, metals and oxides. J Mater chem 2004;14:228-232.
[94] cote lJ, Teja As, Wilkinson AP, Zhang ZJ. continuous hydrothermal synthesis and crystallization of magnetic oxide nanoparticles.
J Mater Res 2002;17:2410-2416.
[95] cote lJ, Teja As, Wilkinson AP, Zhang ZJ. continuous hydrothermal synthesis of coFe 2 o 4 nanoparticles. Fluid Phase equilib
2003;210:307-317.
[96] Viswanathan R, Gupta RB. Formation of zinc oxide nanoparticles in supercritical water. J supercrit Fluids 2003;27:187-193.
[97] luo y. size-controlled preparation of dendrimer-protected gold nanoparticles: a sunlight irradiation-based strategy. Mater lett
2008;62:3770-3772.
[98] luo x. one-step synthesis and characterization of dendrimer-protected gold nanoparticles. colloid J 2009;71:281-284.
[99] chien y, huang c, Wang s, yeh c. synthesis of nanoparticles: sunlight formation of gold nanodecahedra for ultra-sensitive lead-ion
detection. Green chem 2011;13:1162-1166.
[100] Patil AB, lanke sR, deshmukh KM, Pandit AB, Bhanage BM. solar energy assisted palladium nanoparticles synthesis in aqueous
medium. Mater lett 2012;79:1-3.
[101] Patil AB, Bhanage BM. solar energy assisted starch-stabilized palladium nanoparticles and their application in c-c coupling reactions.
J Nanosci Nanotechnol 2013;13:1-8.
[102] Patil AB, Patil ds, Bhanage BM. selective and efficient synthesis of decahedral palladium nanoparticles and its catalytic performance
for suzuki coupling reaction. J Mol catal A 2012;365:146-153.
[103] Patil AB, Patil ds, Bhanage BM. Zno nanoparticle by solar energy and their catalytic application for α-amino phosphonates synthesis.
Mater lett 2012;86:50-53.
[104] Patil AB, Bhanage BM. Novel and green approach for the nanocrystalline magnesium oxide synthesis and its catalytic performance in
claisen-schmidt condensation. catal commun 2013;36:79-83.
Search WWH ::




Custom Search