Environmental Engineering Reference
In-Depth Information
[62] He Z, Yang S, Ju Y, Sun c. Microwave photocatalytic degradation of rhodamine b using TiO 2 supported on activated carbon: mechanism
implication. J environ Sci 2009;21:268-272.
[63] chen cc. Degradation pathways of ethyl violet by photocatalytic reaction with ZnO dispersions. J Mol catal A chem 2007;264:
82-92.
[64] Han J, liu Y, Singhal n, Wang l, Gao W. comparative photocatalytic degradation of estrone in water by ZnO and TiO 2 under artificial
UVA and solar irradiation. chem eng J 2012;213:150-162.
[65] pirkanniemi K, Sillanpaa M. Heterogeneous water phase catalysis as an environmental application: a review. chemosphere 2002;48:
1047-1060.
[66] Jang YJ, Simer c, Ohm T. comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation
of methylene blue. Mater res bull 2006;41:67-77.
[67] Wu W, cai YW, chen JF, Shen Sl, Martin A, Wen lX. preparation and properties of composite particles made by nano zinc oxide coated
with titanium dioxide. J Mater Sci 2006;41:5845-5850.
[68] Yu D, cai r, liu Z. Studies on the photodegradation of rhodamine dyes on nanometer-sized zinc oxide. Spectrochim Acta A Mol
biomol Spectrosc 2004;60:1617-1624.
[69] Anandan S, Vinu A, Mori T, Gokulakrishnan n, Srinivasu p, Murugesan V, Ariga K. photocatalytic degradation of 2,4,6-trichlorophenol
using lanthanum doped ZnO in aqueous suspension. catal commun 2007;8:1377-1382.
[70] cun W, Jincai Z, Xinming W, bixian M, Guoying S, ping'an p, Jiamo F. preparation, characterization and photocatalytic activity of
nano-sized ZnO/SnO 2 coupled photocatalysts. Appl catal environ 2002;39:269-279.
[71] Ortega-Gómez e, Fernández-Ibáñez p, ballesteros Martín MM, polo-lópez MI, esteban García b, Sánchez pérez JA. Water disinfec-
tion using photo-Fenton: effect of temperature on Enterococcus faecalis survival. Water res 2012;46:6154-6162.
[72] Sadiq IM, chandrasekaran n, Mukherjee A. Studies on effect of TiO 2 nanoparticles on growth and membrane permeability of Escherichia
coli , pseudomonas aeruginosa, and bacillus subtilis. curr nanosci 2010;6:381-387.
[73] Morones Jr, elechiguerra Jl, camacho A, Holt K, Kouri Jb, ramírez JT. The bactericidal effect of silver nanoparticles. nanotechnology
2005;16:2346-2353.
[74] lalueza p, Monzón M, Arruebo M, Santamaría J. bactericidal effects of different silver-containing materials. Mater res bull
2011;46:2070-2076.
[75] Matsumura Y, Yoshikata K, Kunisaki S-I, Tsuchido T. Mode of bactericidal action of silver zeolite and its comparison with that of silver
nitrate. Appl environ Microbiol 2003;69:4278-4281.
[76] lin W-c, chen c-n, Tseng T-T, Wei M-H, Hsieh JH, Tseng WJ. Micellar layer-by-layer synthesis of TiO 2 /Ag hybrid particles for bac-
tericidal and photocatalytic activities. J eur ceram Soc 2010;30:2849-2857.
[77] Taurozzi JS, Arul H, bosak VZ, burban AF, Voice Tc, bruening Ml, Tarabara VV. effect of filler incorporation route on the properties
of polysulfone-silver nanocomposite membranes of different porosities. J Membr Sci 2008;325:58-68.
[78] Wu G, Gan S, cui l, Xu Y. preparation and characterization of peS/TiO 2 composite membranes. Appl Surf Sci 2008;254:7080-7086.
[79] Yang Y, Zhang H, Wang p, Zheng Q, li J. The influence of nano-sized TiO 2 fillers on the morphologies and properties of pSF UF mem-
brane. J Membr Sci 2007;288:231-238.
[80] li JH, Xu YY, Zhu lp, Wang JH, Du cH. Fabrication and characterization of a novel TiO 2 nanoparticle self-assembly membrane with
improved fouling resistance. J Membr Sci 2009;326:659-666.
[81] bae T-H, Kim I-c, Tak T-M. preparation and characterization of fouling-resistant TiO 2 self-assembled nanocomposite membranes. J
Membr Sci 2006;275:1-5.
[82] rahimpour A, Madaeni SS, Taheri AH, Mansourpanah Y. coupling TiO 2 nanoparticles with UV irradiation for modification of poly-
ethersulfone ultrafiltration membranes. J Membr Sci 2008;313:158-169.
[83] rahimpour A, Jahanshahi M, Mollahosseini A, rajaeian b. Structural and performance properties of UV-assisted TiO 2 deposited nano-
composite pVDF/SpeS membranes. Desalination 2012;285:31-38.
[84] Mansourpanah Y, Madaeni SS, rahimpour A, Farhadian A, Taheri AH. Formation of appropriate sites on nanofiltration membrane
surface for binding TiO 2 photo-catalyst: performance, characterization, and fouling-resistant capability. J Membr Sci 2009;
330:297-306.
[85] Vatanpour V, Madaeni SS, Khataee Ar, Salehi e, Zinadini S, Monfared HA. TiO 2 embedded mixed matrix peS nanocomposite mem-
branes: influence of different sizes and types of nanoparticles on antifouling and performance. Desalination 2012;292:19-29.
[86] cao X, Ma J, Shi X, ren Z. effect of TiO 2 nanoparticle size on the performance of pVDF membrane. Appl Surf Sci 2006;253:
2003-2010.
[87] Jadav Gl, Singh pS. Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties. J Membr Sci 2009;328:
257-267.
[88] Jin lM, Yu Sl, Shi WX, Yi XS, Sun n, Ge Yl, Ma c. Synthesis of a novel composite nanofiltration membrane incorporated SiO 2
nanoparticles for oily wastewater desalination. polymer 2012;53:5295-5303.
Search WWH ::




Custom Search