Environmental Engineering Reference
In-Depth Information
[20] Pirkanniemi K, Sillanpää m. Heterogeneous water phase catalysis as an environmental application: a review. chemosphere 2002;
48:1047-1060.
[21] Al-Rasheed RA. Water treatment by heterogeneous photocatalysis: an overview. Proceedings of the 4th SWcc Acquired experience
Symposium Jeddah; 2005.
[22] Serpone N, Salinaro A. Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part I: suggested
protocol. Pure Appl chem 1999;71:303-320.
[23] chen x, mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. chem Rev 2007;107:2891-2959.
[24] Kitazawa S, choi y, yamamoto S, yamaki T. Rutile and anatase mixed crystal TiO 2 thin films prepared by pulsed laser deposition. Thin
Solid films 2006;515:1901-1904.
[25] Zhao l, Han m, lian J. Photocatalytic activity of TiO 2 films with mixed anatase and rutile structures prepared by pulsed laser deposi-
tion. Thin Solid films 2008;516:3394-3398.
[26] Heo cH, lee S-B, Boo J-H. Deposition of TiO 2 thin films using Rf magnetron sputtering method and study of their surface character-
istics. Thin Solid films 2005;475:183-188.
[27] Ogawa H, Higuchi T, Nakamura A, Tokita S, miyazaki D, Hattori T, Tsukamoto T. Growth of TiO 2 thin film by reactive Rf magnetron
sputtering using oxygen radical. J Alloy compd 2008;449:375-378.
[28] Nolan mG, Pemble me, Sheel DW, yates Hm. One step process for chemical vapour deposition of titanium dioxide thin films incorpo-
rating controlled structure nanoparticles. Thin Solid films 2006;515:1956-1962.
[29] Azizi R, Rasouli S, Ahmadi NP, Kolaei AJJ, Azizi m. A systematic investigation of experimental conditions on the particle size and
structure of TiO 2 nanoparticles synthesized by a sol-gel method. J ceram Process Res 2012;13:164-169.
[30] Zhang H, finnegan m, Banfield Jf. Preparing single-phase nanocrystalline anatase from amorphous titania with particle sizes tailored
by temperature. Nano lett 2001;1:81-85.
[31] Banerjee I, Karmaker S, Kulkarni NV, Nawale AB, mathe Vl, Das AK, Bhoraskar SV. effect of ambient pressure on the crystalline
phase of nano TiO 2 particles synthesized by a dc thermal plasma reactor. J Nanopart Res 2010;12:581-590.
[32] Dreesen l, colomer J-f, limage H, Giguère A, lucas S. Synthesis of titanium dioxide nanoparticles by reactive Dc magnetron
sputtering. Thin Solid films 2009;518:112-115.
[33] Wahi RK, liu y, falkner Jc, colvin Vl. Solvothermal synthesis and characterization of anatase TiO 2 nanocrystals with ultrahigh surface
area. J colloid Interface Sci 2006;302:530-536.
[34] li W, Ni c, lin H, Huang cP, Shah SI. Size dependence of thermal stability of TiO 2 nanoparticles. J Appl Phys 2004;96:6663-6668.
[35] Zhang H, Penn Rl, Hamers RJ, Banfield Jf. enhanced adsorption on surfaces of nanocrystalline materials. J Phys chem B
1999;103:4656-4662.
[36] Han y, Kim H-S, Kim H. Relationship between synthesis conditions and photocatalytic activity of nanocrystalline TiO 2 . J Nanomater
2012;2012:10.
[37] Balázs N, mogyorósi K, Srankó Df, Pallagi A, Alapi T, Oszkó A, Dombi A, Sipos P. The effect of particle shape on the activity of
nanocrystalline TiO 2 photocatalysts in phenol decomposition. Appl catal B 2008;84:356-362.
[38] Balázs N, Srankó Df, Dombi A, Sipos P, mogyorósi K. The effect of particle shape on the activity of nanocrystalline TiO 2 photocatalysts
in phenol decomposition. Part 2: The key synthesis parametersinfluencing the particle shape and activity. Appl catal B 2010;96:569-576.
[39] mogyorósi K, Balázs N, Srankó Df, Tombácz e, Dékány I, Oszkó A, Sipos P, Dombi A. The effect of particle shape on the activity of
nanocrystalline TiO 2 photocatalysts in phenol decomposition. Part 3: The importance of surface quality. Appl catal B 2010;96:577-585.
[40] xiong l-B, li J-l, yang B, yu y. Ti 3+ in the surface of titanium dioxide: generation, properties and photocatalytic application.
J Nanomater 2012;2012:13.
[41] liu H, ma HT, li xZ, li WZ, Wu m, Bao xH. The enhancement of TiO 2 photocatalytic activity by hydrogen thermal treatment.
chemosphere 2003;50:39-46.
[42] Nowotny mK, Sheppard lR, Bak T, Nowotny J. Defect chemistry of titanium dioxide. Application of defect engineering in processing
of TiO 2 -based photocatalysts. J Phys chem c 2008;112:5275-5300.
[43] Sirisuk A, Klansorn e, Praserthdam P. effects of reaction medium and crystallite size on Ti 3+ surface defects in titanium dioxide nanopar-
ticles prepared by solvothermal method. catal commun 2008;9:1810-1814.
[44] Kongsuebchart W, Praserthdam P, Panpranot J, Sirisuk A, Satayaprasert c, Supphasrirongjaroen P. effect of crystallite size on the surface
defect of nano-TiO 2 prepared via solvothermal synthesis. J cryst Growth 2006;297:234-238.
[45] Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi K. Role of oxygen vacancy in the plasma-treated TiO 2 photocatalyst
with visible light activity for NO removal. J mol catal A 2000;161:205-212.
[46] Zhang D, li G, li H, lu y. The development of better photocatalysts through composition- and structure-engineering. chem Asian J
2013;8:26-40.
[47] Zhuang H-f, lin c-J, lai y-K, Sun l, li J. Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity.
environ Sci Technol 2007;41:4735-4740.
Search WWH ::




Custom Search