Environmental Engineering Reference
In-Depth Information
[160] eliet V, Bidoglio g. Kinetics of the laser-induced photoreduction of U(VI) in aqueous suspensions of TiO 2 particles. environ Sci
Technol 1998;32:3155-3161.
[161] Boxall C, Le gurun g, Taylor RJ, xiao S. The applications of photocatalytic waste minimisation in nuclear fuel processing. In: Boule
P, Bahnemann dw, Robertson PKJ, editors. Environmental Photochemistry Part II (The Handbook of Environmental Chemistry , Vol.
2, Part M). Berlin, Heidelberg: Springer-Verlag; 2005. p 451-481.
[162] Bonato M, Allen g, Scott T. Reduction of U(VI) to U(IV) on the surface of TiO 2 anatase nanotubes. Micro Nano Lett 2008;3:57-61.
[163] wHO. Lead in drinking-water, background document for development of wHO—guidelines for drinking-water Quality. geneva:
wHO; 2011. Report nr wHO/Sde/wSH/03.04/09/Rev/1.
[164] galus Z. Carbon, silicon, germanium, tin, and lead. In: Bard JA, Parsons R, Jordan J, editors. Standard Potentials in Aqueous Solution .
New york: Marcel dekker, Inc.; 1985. p 189-236.
[165] Chenthamarakshan CR, yang H, Savage CR, Rajeshwar K. Photocatalytic reactions of divalent lead ions in UV-irradiated titania
suspensions. Res Chem Intermed 1999;25:861-876.
[166] Inoue T, fujishima A, Honda K. Photoelectrochemical imaging processes using semiconductor electrodes. Chem Lett 1978;7:1197-1200.
[167] Inoue T, fujishima A, Honda K. Photoelectrochemical characteristics of photo- electrochemical imaging system…. J electrochem Soc
1980;127:1582-1588.
[168] Kabra K, Chaudhary R, Sawhney RL. effect of pH on solar photo catalytic reduction and deposition of Cu(II), Ni(II), Pb(II), and
Zn(II): speciation modeling and reaction kinetics. J Hazard Mater 2007;149:680-685.
[169] Kabra K, Chaudhary R, Sawhney RL. Solar photocatalytic removal of Cu(II), Ni(II), Zn(II), and Pb(II): speciation modeling of metal-
citric acid complexes. J Hazard Mater 2008;155:424-432.
[170] Kobayashi T, Taniguchi y, yoneyama H, Tamura H. effective surfaces of semiconductor catalysts for light-induced heterogeneous
reactions evaluated by simultaneous photodeposition of both oxidation and reduction products. J Phys Chem 1983;87:768-778.
[171] Lawless d, Res A, Harris R, Serpone N, Minero C, Pelizzetti e, Hidaka H. Removal of toxic metal from solutions by photocatalysis
using irradiated platinized titanium dioxide: removalof lead. Chim Ind 1990;72:139-146.
[172] Maillard-dupuy C, guillard C, Pichat P. The degradation of nitrobenzene in water by photocatalysis over TiO 2 —kinetics and prod-
ucts—simultaneous elimination of benzamide or phenol or Pb2+ cations. New J Chem 1994;18:941-948.
[173] Mishra T, Hait J, Aman N, Jana RK, Chakravarty S. effect of UV and visible light on photocatalytic reduction of lead and cadmium
over titania based binary oxide materials. J Colloid Interface Sci 2007;316:80-84.
[174] Rajeshwar K, Chenthamarakshan CR, Ming y, Sun w. Cathodic photoprocesses on titania films and in aqueous suspensions.
J electroanal Chem 2002;538-539:173-182.
[175] Rajh T, Ostafin Ae, Micic OI, Tiede dM, Thurnauer MC. Surface modification of small particle TiO 2 colloids with cysteine for
enhanced photochemical reduction: an ePR study. J Phys Chem 1996;100:4538-4545.
[176] Rajh T, Tiede dM, Thurnauer MC. Surface modification of TiO 2 nanoparticles with bidentate ligands studied by ePR spectroscopy.
J Non-Cryst Solids 1996;205-207:815-820.
[177] Tennakone K. Photoreduction of carbonic acid by mercury coated n-titanium oxide. Sol energy Mater 1984;10:235-238.
[178] Tennakone K, wijayantha KgU. Heavy-metal extraction from aqueous medium with an immobilized TiO 2 photocatalyst and a solid
sacrificial agent. J Photochem Photobiol A 1998;113:89-92.
[179] Thurnauer MC, Rajh T, Tiede dM. Surface modification of TiO 2 : correlation between structure, charge separation and reduction
properties. Acta Chem Scand 1997;51:610-618.
[180] Torres J, Cervera-March S. Kinetics of the photoassisted catalytic oxidation of Pb(II) in TiO 2 suspensions. Chem eng Sci
1992;47:3857-3862.
[181] Brillas e, Calpe JC, Cabot PL. degradation of the herbicide 2,4-dichlorophenoxyacetic acid by ozonation catalyzed with fe2+ and
UVA light. Appl Catal B 2003;46:381-391.
[182] Kasprzyk-Hordern B, Ziółek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water
treatment. Appl Catal B 2003;46:639-669.
[183] Tanaka K, Abe K, Hisanaga T. Photocatalytic water treatment on immobilized TiO 2 combined with ozonation. J Photochem Photobiol
A 1996;101:85-87.
[184] Breitenkamp M, Henglein A, Lilie J. Mechanism of the reduction of lead ions in aqueous solution (a pulse radiolysis study), Ber.
Bunsenges. Phys Chem Chem Phys 1976;80:973-979.
[185] Li L, Jiang f, Liu J, wan H, wan y, Zheng S. enhanced photocatalytic reduction of aqueous Pb(II) over Ag loaded TiO 2 with formic
acid as hole scavenger. J environ Sci Health A 2012;47:327-336.
[186] yang Z-P, Zhang C-J. Kinetics of photocatalytic reduction of Pb(II) on nanocrystalline TiO 2 coatings: a quartz crystal microbalance
study. Thin Solid films 2010;518:6006-6009.
[187] Harraz fA, Abdel-Salam Oe, Mostafa AA, Mohamed RM, Hanafy M. Rapid synthesis of titania-silica nanoparticles photocatalyst by
a modified sol-gel method for cyanide degradation and heavy metals removal. J Alloys Compd 2013;551:1-7.
Search WWH ::




Custom Search