Environmental Engineering Reference
In-Depth Information
[104] Shim e, Park y, Bae S, yoon J, Joo H. Photocurrent by anodized TiO 2 photoelectrode for enzymatic hydrogen production and
chromium(VI) reduction. Int J Hydrogen energy 2008;33:5193-5198.
[105] Tuprakay S, Liengcharernsit w. Liengcharernsit, lifetime and regeneration of immobilized titania for photocatalytic removal of
aqueous hexavalent chromium. J Hazard Mater 2005;124:53-58.
[106] Tzou yM, wang SL, wang MK. fluorescent light induced Cr(VI) reduction by citrate in the presence of TiO 2 and ferric ions. Colloids
Surf A 2005;253:15-22.
[107] wang L, wang N, Zhu L, yu H, Tang H. Photocatalytic reduction of Cr(VI) over different TiO 2 photocatalysts and the effects of
dissolved organic species. J Hazard Mater 2008;152:93-99.
[108] wang S, wang Z, Zhuang Q. Photocatalytic reaction of environmental pollutants Cr(VI) over CdS powder. Appl Catal B
1992;1:257-270.
[109] xu xR, Li HB, gu Jd. Simultaneous decontamination of hexavalent chromium and methyl tert-butyl ether by UV/TiO 2 process.
Chemosphere 2006;63:254-260.
[110] xu y, Chen x. Photocatalytic reduction of dichromate over semiconductor catalysts. Chem Ind 1990(15):497-498.
[111] yang JK, Lee SM. Removal of Cr(VI) and humic acid by using TiO 2 photocatalysis. Chemosphere 2006;63:1677-1684.
[112] Zheng S, xu Z, wang y, wei Z, wang B. On the enhanced catalytic activity of TiO 2 -supported layered compounds for Cr(VI)
photo-reduction. J Photochem Photobiol A 2000;137:185-189.
[113] Meichtry JM, Brusa M, Mailhot g, grela MA, Litter MI. Heterogeneous photocatalysis of Cr(VI) in the presence of citric acid over
TiO 2 particles: relevance of Cr(V)-citrate complexes. Appl Catal B 2007;71:101-107.
[114] Testa JJ, grela MA, Litter MI. experimental evidence in favor of an initial one-electron transfer process in the heterogeneous
photocatalytic reduction of chromium (VI) over TiO 2 . Langmuir 2001;17:3515-3517.
[115] Testa JJ, grela MA, Litter MI. Heterogeneous photocatalytic reduction of chromium (VI) over TiO 2 particles in the presence of
oxalate. Involvement of Cr(V) species. environ Sci Technol 2004;38:1589-1594.
[116] di Iorio y, Román eS, Litter MI, grela MA. Photoinduced reactivity of strongly coupled TiO 2 ligands under visible irradiation. An
examination of Alizarin Red @TiO 2 nanoparticulate system. J Phys Chem C 2008;112:16532-16538.
[117] Meichtry JM. Tratamiento de Cr(VI) por fotocatálisis Heterogénea con TiO 2 [doctoral Thesis]. Buenos Aires: Universidad de Buenos
Aires; 2011.
[118] Testa JJ. estudios fotocatalíticos de reducción y oxidación con TiO 2 , fe/TiO 2 y Pt/TiO 2 [doctoral Thesis]. Buenos Aires: Universidad
de Buenos Aires; 2012.
[119] Alam M, Henderson MA, Kaviratna Pd, Herman gS, Peden CHf. Chromyl chloride chemistry on the TiO 2 (110) surface. J Phys Chem
B 1998;102:111-122.
[120] Kuncewicz J, Ząbek P, Kruczała K, Szaciłowski K, Macyk w. Photocatalysis involving a visible light-induced hole injection in a
chromate(VI)-TiO 2 system. J Phys Chem C 2012;116:21762-21770.
[121] giannakas Ae, Seristatidou e, deligiannakis y, Konstantinou I. Photocatalytic activity of N-doped and N-f co-doped TiO 2 and
reduction of chromium(VI) in aqueous solution: an ePR study. Appl Catal B 2013;132-133:460-468.
[122] Hsu HT, Chen SS, Chen yS. Removal of chromium(VI) and naphtha-lenesulfonate from textile wastewater by photocatalysis combining
ionic ex-change membrane processes. Sep Purif Technol 2011;80:663-669.
[123] Kim g, Choi w. Charge-transfer surface complex of edTA-TiO 2 and Its effect on photocatalysis under visible light. Appl Catal B
2010;100:77-83.
[124] Kleiman A, Márquez A, Vera ML, Meichtry JM, Litter MI. Photocatalytic activity of TiO 2 thin films deposited by cathodic arc. Appl
Catal B 2011;101:676-681.
[125] Liu S, Zhang N, Tang Z-R, xu y-J. Synthesis of one-dimensional CdS@TiO 2 core-shell nanocomposites photocatalyst for selective
redox: the dual role of TiO 2 shell. ACS Appl Mater Interfaces 2012;4:6378-6385.
[126] Luo S, xiao y, yang L, Liu C, Su f, Li y, Cai Q, Zeng g. Simultaneous detoxification of hexavalent chromium and acid orange 7 by a
novel Au/TiO 2 heterojunction composite nanotube arrays. Sep Purif Technol 2011;79:85-91.
[127] Mu R, xu Z, Li L, Shao y, wan H, Zheng S. On the photocatalytic properties of elongated TiO 2 nanoparticles for phenoldegradation
and Cr(VI) reduction. J Hazard Mater 2010;176:495-502.
[128] Shaham waldmann N, Paz y. Photocatalytic reduction of Cr(VI) by titanium dioxide coupled to functionalized CNTs: an example of
counterproductive charge separation. J Phys Chem C 2010;114:18946-18952.
[129] wang N, Zhu L, deng K, She y, yu y, Tang H. Visible light photocatalytic reduction of Cr(VI) on TiO 2 in situ modified with small
molecular weight organic acids. Appl Catal B 2010;95:400-407.
[130] yoon J, Shim e, Bae S, Joo H. Application of immobilized nanotubular TiO 2 electrode for photocatalytic hydrogen evolution: reduction
of hexavalent chromium (Cr(VI)) in water. J Hazard Mater 2009;161:1069-1074.
[131] Pandikumar A, Ramaraj R. Titanium dioxide-gold nanocomposite materials embedded in silicate sol-gel film catalyst for simultaneous
photodegradation of hexavalent chromium and methylene blue. J Hazard Mater 2012;203-204:244-250.
Search WWH ::




Custom Search