Environmental Engineering Reference
In-Depth Information
decrease in the conversion time. effective immobilization of the photocatalyst is a major challenge, which will have a
significant effect on photocatalytic reactor design and costs, suppressing additional operations of separating catalysts from
treated water.
However, it is important to take into account that these treatments have to be applied only at small and medium scales.
Combination with other AOPs/ARPs or conventional treatments should also be considered to improve the efficiency of the
removal of contaminants or mixtures of contaminants. Application in real waters should also take into account the presence of
interferences such as phosphates, silicates, and carbonates/bicarbonates, which could influence removal. In this sense, arsenic
removal is very sensitive to these species.
refereNces
[1] degremont g. Water Treatment Handbook . Paris: Lavoisier Publishing; 1991.
[2] Tchobanoglous g, Burton fL, Stensel Hd. Wastewater Engineering Treatment and Reuse . New york: Mcgraw-Hill; 2003.
[3] domènech x, Jardim wf, Litter MI. Tecnologias avanzadas de oxidacion para la eliminacion de contaminantes. In: Blesa MA, Sánchez
Cabrero B, editors. eliminación de contaminantes por fotocatálisis heterogénea. Texto Colectivo elaborado por la Red CyTed VIII-
ged. ediciones CIeMAT. Madrid, españa; 2004. p 7-34.
[4] Hoffmann MR, Martin ST, Choi w, Bahnemann dw. environmental applications of semiconductor photocatalysis. Chem Rev
1995;95:69-96.
[5] Huang CP, dong C, Tang Z. Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. waste
Manage 1993;13:361-377.
[6] Legrini O, Oliveros e, Braun AM. Photochemical processes for water treatment. Chem Rev 1993;93:671-698.
[7] Litter MI. Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl Catal B 1999;23:89-114.
[8] Litter MI. Introduction to photochemical advanced oxidation processes for water treatment. In: Boule P, Bahnemann dw, Robertson
PKJ, editors. Environmental Photochemistry Part II (The Handbook of Environmental Chemistry , Vol. 2, Part M). Berlin, Heidelberg:
Springer-Verlag; 2005. p 325-366.
[9] Rajeshwar K. Photoelectrochemistry and the environment. J Appl electrochem 1995;25:1067-1082.
[10] Litter MI. Treatment of chromium, mercury, lead, uranium, and arsenic in water by heterogeneous photocatalysis. Adv Chem eng
2009;36:37-67.
[11] Litter MI, domènech x, Mansilla Hd, Blesa MA, Sánchez Cabrero B. Remoción de contaminantes metálicos. In: Blesa MA, Sánchez
Cabrero B, editors. eliminación de contaminantes por fotocatálisis heterogénea. Texto Colectivo elaborado por la Red CyTed VIII-
ged. ediciones CIeMAT. Madrid, españa; 2004. p 163-187.
[12] grela MA, Loeb B, Restrepo gM, Lagorio Mg, San Román e. Los mecanismos dedestrucción decontaminantes orgánicos. In: Blesa
MA, Sánchez Cabrero B, editors. eliminación de contaminantes por fotocatálisis heterogénea. Texto Colectivo elaborado por la Red
CyTed VIII-ged. ediciones CIeMAT. Madrid, españa; 2004. p 125-162.
[13] Liu I, Lawton LA, Bahnemann dw, Liu L, Proft B, Robertson PKJ. The photocatalytic decomposition of microcystin-LR using selected
titanium dioxide materials. Chemosphere 2009;76:549-553.
[14] Hufschmidt d, Bahnemann d, Testa JJ, emilio CA, Litter MI. enhancement of the photocatalytic activity of various TiO 2 materials by
platinisation. J Photochem Photobiol A 2002;148:223-231.
[15] emilio CA, Litter MI, Kunst M, Bouchard M, Colbeau-Justin C. Phenol photodegradation on platinized-TiO 2 photocatalysts related to
charge-carrier dynamics. Langmuir 2006;22:3606-3613.
[16] Martin ST, Herrmann H, Hoffmann MR. Time-resolved microwave conductivity. Part 2.—Quantum-sized TiO 2 and the effect of adsor-
bates and light intensity on charge-carrier dynamics. J Chem Soc faraday Trans 1994;90:3323-3330.
[17] fujishima A, Zhang x, Tryk dA. TiO 2 photocatalysis and related surface phenomena. Surf Sci Rep 2008;63:515-582.
[18] wardman P. Reduction potentials of one-electron couples involving free radicals in aqueous solution. J Phys Chem Ref data
1989;18:1637-1755.
[19] Murruni L, Leyva g, Litter MI. Photocatalytic removal of Pb(II) over TiO 2 and Pt-TiO 2 powders. Catal Today 2007;129:127-135.
[20] Murruni L, Conde f, Leyva g, Litter MI. Photocatalytic reduction of Pb(II) over TiO 2 : new insights on the effect of different electron
donors. Appl Catal B 2008;84:563-569.
[21] Levy IK, Mizrahi M, Ruano g, Zampieri g, Requejo fg, Litter MI. TiO 2 -photocatalytic reduction of pentavalent and trivalent arsenic:
production of elemental arsenic and arsine. environ Sci Technol 2012;46:2299-2308.
[22] Litter MI, Morgada Me, Bundschuh J. Possible treatments for arsenic removal in Latin American waters for human consumption.
environ Pollut 2010;158:1105-1118.
Search WWH ::




Custom Search