Environmental Engineering Reference
In-Depth Information
[49] Parsons JG, Hejazi M, Tiemann KJ, Henning J, Gardea-Torresdey Jl. An XAS study of the binding of copper(II), zinc(II), chromium(III)
and chromium(vI) to hopbiomass. Microchem J 2002;71:211-219.
[50] Modrzejewska Z, Kaminski W. Separation of Cr (vI) on chitosan membranes. Ind eng Chem Res 1999;38:4946-4950.
[51] Pansini M, Colella C, Gennaro M. Chromium removal from water by ion exchange using zeolite. Desalination 1991;83:145-157.
[52] Melitas N, Chuffe-Moscoso O, Farrell J. Kinetics of soluble chromium removal from contaminated water by zerovalent iron media:
corrosion inhibition and passive oxide effects. environ Sci Technol 2001;35:3948-3953.
[53] Wei S, Wang Q, Zhu J, Sun l, lin H, Guo Z. Multifunctional composite core-shell nanoparticles. Nanoscale 2011;3:4474-4502.
[54] Deng b, Stone AT. Surface-catalyzed chromium(vI) reduction: reactivity comparisons of different organic reductants and different
oxide surfaces. environ Sci Technol 1996;30:2484-2494.
[55] Jardine PM, Fendorf Se, Mayes MA, larsen Il, brooks SC, bailey Wb. Fate and transport of hexavalent chromium in undisturbed soil.
environ Sci Technol 1999;33:2939-2944.
[56] Powell RM, Puls RW, Hightower SK, Sabatini DA. Coupled iron corrosion and chromate reduction: mechanisms for subsurface reme-
diation. environ Sci Technol 1995;29:1913-1922.
[57] loyaux-lawniczak S, Refait P, ehrhardt J-J, lecomte P, Génin JMR. Trapping of Cr by formation of ferrihydrite during the reduction
of chromate ions by Fe(II)-Fe(III) hydroxysalt green rusts. environ Sci Technol 1999;34:438-443.
[58] Reardon eJ. Anaerobic corrosion of granular iron measurement and interpretation of hydrogen evolution rates. environ Sci Technol
1995;29:2936-2945.
[59] Gangoly N, Markey DC, Thodos G. Water-reuse: water's interface with energy, air, and solids . CONF-750530. New York: American
Institute of Chemical engineers; March 19-20, 1975.
[60] Zhang W. Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 2003;5:323-332.
[61] Ponder SM, Darab JG, Mallouk Te. Remediation of Cr(vI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron.
environ Sci Technol 2000;34:2564-2569.
[62] Hu J-S, Zhong l-S, Song W-G, Wan l-J. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion
removal. Adv Mater 2008;20:2977-2982.
[63] lu Y, Yin Y, Mayers bT, Xia Y. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel
approach. Nano lett 2002;2:183-186.
[64] Wang G, Harrison A. Preparation of iron particles coated with silica. J Colloid Interface Sci 1999;217:203-207.
[65] Zhu J, Wei S, Haldolaarachchige N, Young DP, Guo Z. electromagnetic field shielding polyurethane nanocomposites reinforced with
core-shell Fe silica nanoparticles. J Phys Chem C 2011;115:15304-15310.
[66] Zhu J, Wei S, lee IY, Park S, Willis J, Haldolaarachchige N, Young DP, luo Z, Guo Z. Silica stabilized iron particles toward anti-
corrosion magnetic polyurethane nanocomposites. RSC Adv 2012;2:1136-1143.
[67] Pellegrino T, Manna l, Kudera S, liedl T, Koktysh D, Rogach Al, Keller S, Rädler J, Natile G, Parak WJ. Hydrophobic nanocrystals
coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano lett 2004;4:703-707.
[68] lin C-AJ, Sperling RA, li JK, Yang T-Y, li P-Y, Zanella M, Chang WH, Parak WJ. Design of amphiphilic polymer for nanoparticle
coating and functionalization. Small 2008;4:334-341.
[69] Cho S-J, Idrobo J-C, Olamit J, liu K, browning ND, Kauzlarich SM. Growth mechanisms and oxidation-resistance of Au-coated Fe
nanoparticles. Chem Mater 2005;17:3181-3186.
[70] lu Z, Prouty MD, Guo Z, Golub vO, Kumar CSSR, lvov YM. Magnetic switch of permeability for polyelectrolyte microcapsules
embedded with Co@Au nanoparticles. langmuir 2005;21:2042-2050.
[71] Guo Z, Kumar C, Henry l, Doomes e, Hormes J, Podlaha eJ. Displacement synthesis of Cu shells surrounding Co nanoparticles.
J electrochem Soc 2005;152:D1-D5.
[72] Oliveira lCA, Rios RvRA, Fabris JD, Garg v, Sapag K, lago RM. Activated carbon/iron oxide magnetic composites for the adsorption
of contaminants in water. Carbon 2002;40:2177-2183.
[73] vaughan Rl Jr, Reed be. Modeling As(v) removal by a iron oxide impregnated activated carbon using the surface complexation
approach. Water Res 2005;39:1005-1014.
[74] Schnoor Jl, editor. Environmental Modeling: Fate and Transport of Pollutants in Water, Air, and Soil . New York: John Wiley & Sons; 1996.
[75] Kim J, benjamin MM. Modeling a novel ion exchange process for arsenic and nitrate removal. Water Res 2004;38:2053.
[76] Kang M, Kawasaki M, Tamada S, Kamei T, Magara Y. effect of pH on the removal of arsenic and antimony using reverse osmosis mem-
branes. Desalination 2000;131:293.
[77] Zhu J, Sadu R, Wei S, Chen D, Haldolaarachchige N, luo Z, Gomes J, Young DP, Guo Z. Magnetic graphene nanoplatelet composites
toward arsenic removal. eCS J Solid State Sci Technol 2012;1 (1):M1-M5.
Search WWH ::




Custom Search