Environmental Engineering Reference
In-Depth Information
[21] Zhu J, Wei S, li Y, Sun l, Haldolaarachchige N, Young D, Southworth C, Khasanov A, luo Z, Guo Z. Surfactant-free synthesized
magnetic polypropylene nanocomposites: rheological, electrical, magnetic and thermal properties. Macromolecules 2011;44:
4382-4391.
[22] He Q, Yuan T, Wei S, Haldolaarachchige N, luo Z, Young DP, Khasanov A, Guo Z. Morphology and phase controlled iron oxide
nanoparticles stabilized with maleic anhydride grafted polypropylene. Angew Chem Int ed 2012;51:8842-8845.
[23] Zhang D, Wei S, Kaila C, Su X, Wu J, Karki Ab, Young DP, Guo Z. Carbon-stabilized iron nanoparticles for environmental remediation.
Nanoscale 2010;2:917-919.
[24] Guo Z, Park S, Hahn HT, Wei S, Moldovan M, Karki Ab, Young DP. Giant magnetoresistance behavior of an iron/carbonized polyure-
thane nanocomposite. Appl Phys lett 2007;90:053111.
[25] Zhu J, Wei S, Gu H, Rapole Sb, Wang Q, luo Z, Haldolaarachchige N, Young DP, Guo Z. One-pot synthesis of magnetic graphene
nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. environ Sci Technol 2012;46:977−985.
[26] berkowitz Ae, Mitchell JR, Carey MJ, Young AP, Zhang S, Spada Fe, Parker FT, Hutten A, Thomas G. Giant magnetoresistance in
heterogeneous Cu-Co alloys. Phys Rev lett 1992;68 (25):3745-3748.
[27] Xiong P, Xiao G, Wang JQ, Xiao JQ, Jiang JS, Chien Cl. extraordinary hall effect and giant magnetoresistance in the granular Co-Ag
system. Phys Rev lett 1992;69 (22):3220-3223.
[28] Zhu J, Gu H, luo Z, Haldolaarachchige N, Young DP, Wei S, Guo Z. Carbon Nanostructures derived polyaniline metacomposites:
electrical dielectric and giant magnetoresistive properties. langmuir 2012;28 (27):10246-10255.
[29] He Q, Yuan T, Zhang X, luo Z, Haldolaarachchige N, Sun l, Young DP, Wei S, Guo Z. Magnetically soft and hard polypropylene/cobalt
nanocomposites: role of maleic anhydride grafted polypropylene. Macromolecules 2013;46:2357-2368.
[30] Hsu lC, Wang Sl, lin YC, Wang MK, Chiang PN, liu JC, Kuan WH, Chen CC, Tzou YM. Cr(vI) removal on fungal biomass of
Neurospora crassa—the importance of dissolved organic carbons derived from the biomass to Cr(vI) reduction. environ Sci Technol
2010;44:6202-6208.
[31] Xu Y, Zhao D. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 2007;4:2101-2108.
[32] Kitchin KT, Conolly R. Arsenic-induced carcinogenesis-oxidative stress as a possible mode of action and future research needs for more
biologically based risk assessment. Chem Res Toxicol 2009;23:327-335.
[33] Chandra v, Park J, Chun Y, lee JW, Hwang IC, Kim KS. Water-dispersible magnetite-reduced graphene oxide composites for arsenic
removal. ACS Nano 2010;4:3979-3986.
[34] Nata IF, Sureshkumar M, lee CK. One-pot preparation of amine-rich magnetite/bacterial cellulose nanocomposite and its application
for arsenate removal. RSC Adv 2011;1:625-631.
[35] Navas-Acien A, Sharrett AR, Silbergeld eK, Schwartz bS, Nachman Ke, burke TA, Guallar e. Arsenic exposure and cardiovascular
disease: a systematic review of the epidemiologic evidence. Am J epidemiol 2005;162:1037-1049.
[36] Zhu J, Wei S, li Y, Pallavkar S, lin H, Haldolaarachchige N, luo Z, Young DP, Guo Z. Comprehensive and sustainable recycling of
polymer nanocomposites. J Mater Chem 2011;21:16239-16246.
[37] Monser l, Adhoum N. Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Sep Purif
Technol 2002;26:137-146.
[38] Kongsricharoern N, Polprasert C. Chromium removal by a bipolar electro-chemical precipitation process. Water Sci Technol
1996;34:109-116.
[39] Hafez A, el-Mariharawy S. Design and performance of the two-stage/two-pass RO membrane system for chromium removal from
tannery wastewater. Part. 3. Desalination 2004;165:141-151.
[40] Modrzejewska Z, Kaminski W. Separation of Cr(vI) on chitosan membranes. Ind eng Chem Res 1999;38:4946-4950.
[41] Rengaraj S, Joo CK, Kim Y, Yi J. Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins
1200H, 1500H andIRN97H. J Hazard Mater 2003;102:257-275.
[42] Rengaraj S, Yeon KH, Moon SH. Removal of chromium from water and wastewaters by ion exchange resins. J Hazard Mater
2001;87:273-287.
[43] Mohan D, Singh KP, Singh vK. Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from
agricultural waste materials and activated carbon fabric cloth. Ind eng Chem Res 2005;44:1027-1042.
[44] Sharma YC, Singh b, Agrawal A, Weng CH. Removal of chromium by riverbed sand from water and wastewater effect of important
parameters. J Hazard Mater 2008;151:789-793.
[45] Hu J, Chen G, lo IMC. Removal and recovery of Cr(vI) from wastewater by maghemite nanoparticles. Water Res 2005;39:4528-4536.
[46] AydIn YA, Aksoy ND. Adsorption of chromium on Chitosan: optimization, kinetics and thermodynamics. Chem eng J 2009;151:188-194.
[47] Zhao Y, Peralta-videa JR, lopez-Moreno Ml, Ren M, Saupe G, Gardea-Torresdey Jl. Kinetin increases chromium absorption, modulates its
distribution, and changes the activity of catalase and ascorbate peroxidase in Mexican Palo verde. environ Sci Technol 2011;45:1082-1087.
[48] Sawalha MF, Gardea-Torresdey Jl, Parsons JG, Saupe G, Peralta-videa JR. Determination of adsorption and speciation of chromium
species by saltbush (atriplex canescens) biomass using a combination of XAS and eCP-OeS. Microchem J 2005;81:122-132.
Search WWH ::




Custom Search