Environmental Engineering Reference
In-Depth Information
Mizusaki, J., Tagawa, H., Miyaki, Y., Yamauchi, S., Koshiro, I. and Hirano, K. (1992) Kinetics
of the electrode reaction at the CO-CO 2 , porous Pt/stabilized zirconia interface. Solid State
Ionics, 53-56, 126-134.
Mostad, E., Rolseth, S. and Thonstad, S. (2008) Electrowinning of Iron from Sulphate Solutions.
Hydrometallurgy , 90, 213-220.
Moyer, C., Sullivan, N., Zhu, H. and Kee, R.J. (2011) Polarization characteristics and chem-
istry in reversible tubular solid-oxide cells operating on mixtures of H 2 , CO, H 2 O, and CO 2 .
Journal of The Electrochemical Society , 158, B117-B131.
Murphy, A.B. (2008) Does carbon doping of TiO 2 allow water splitting in visible light?
Comments on “Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO 2 for
efficient water splitting''. Solar Energy Materials and Solar Cells , 92, 363-367.
Narayanan, S.R., Haines, B., Soler, J. and Valdez, T.I. (2011) Electrochemical conversion of
carbon dioxide to formate in alkaline polymer electrolyte membrane cells. Journal of The
Electrochemical Society , 159, F353-F359.
Ohla, O. Surya, P., Licht, S. and Jackson, N. (2009) Reversing global warming: chemical
recycling and utilization of CO 2 . Report of the National Science Foundation sponsored
7-2008 Workshop, 17 pages; full report available at: http://www.usc.edu/dept/chemistry/
loker/ReversingGlobalWarming.pdf
Ogura, K., Yano, H. and Tanaka, T. (2004) Selective formation of ethylene from CO2 by
catalytic electrolysis at a three-phase interface. Catalysis Today , 98, 515-521.
Oregan, B. and Gratzel, M. (1991) A low-cost, high-efficiency solar cell based on dye-sensitized
colloidal TiO2. Nature 353, 737-740.
Palmaer, W. and Brinell, J. A., (1913) Iron sheets and tubes. Metallurgical and Chemical
Engineering, 11 , 197-203.
Pan, P. and Chen, Y. (2007) Photocatalytic reduction of carbon dioxide on NiO/InTaO 4 under
visible light irradiation. Catalysis Communications , 8, 1546-1549.
Pellegrino, J.L. (2000) Energy &Environmental Profile of the U.S. Chemical Industry . available
online at: http://www1.eere.energy.gov/industry/chemicals/tools_profile.html.
Pitz-Paal, R., (2007) High temperature solar concentrators. Solar Energy Conversion and
Photoenergy Systems , Eds. Galvez, J. B.; Rodriguez, S. M. Oxford: EOLSS Publishers
Qingeng, L., Borum, F., Petrushina, I. and , Bjerrum, N.J. (1999) Complex formation upon dis-
solution of metal oxides in molten alkali carbonates. Journal of The Electrochemical Society ,
146, 2449-2454.
Rajeshwar, K., McConnell, R. and Licht, S. Eds. (2008) The Solar Generation of Hydrogen:
Towards a Renewable Energy Future . Springer, New York, USA.
Richardson, R., Holland, E. and Carpenter, B. (2011) A renewable amine for photochemical
reduction of CO 2 . Nature Chemestry , 3, 301-303.
Richter, R. (1981) Basic investigation into the production of oxygen in a solid electrolyte pro-
cess. American Institute of Aeronautics and Astronautics, 16th Thermophysics Conference ,
June 23-25, 1981, Palo Alto, California, USA.
Siemens (2011) at: http://www.siemens.com/press/pool/de/pressemitteilungen/2011/renewable_
energy/ERE201102037e.pdf.
Solanki, C.S. and Beaucarne, G. (2007) Advanced solar cell concepts. Energy for Sustainable
Developent , 11, 17-23.
SolarReserve (2012) at: http://www.solarreserve.com/.
Stamatiou, A., Loutzenhiser, P.G. and Steinfeld, A. (2010) Solar syngas production from H 2 O
and CO 2 via two-Step thermochemical cycles based on Zn/ZnO and FeO/Fe 3 O 4 redox
reactions: kinetic analysis. Energy Fuels , 24, 2716-2722.
Stancati, M., Niehoff, J., Wells, W. and Ash, R.L. (1979) In situ propellant production -
A new potential for round-trip spacecraft. AIAA Conference on Advanced Technology
for Future Space Systems, May 1979, NASA Langley Research Center AIAA Paper No.
79-0906.
Search WWH ::




Custom Search