Geology Reference
In-Depth Information
Fig. 4.25 Examples of zonal, sectoral, and tesseral surface harmonics, generated using the software utility sph by Phil
McFadden, which can be downloaded at: http://www.ngdc.noaa.gov/geomag/geom_util/sph.shtml
the
average
magnetic energy
density
over
a
They are (Lowes 1966 ):
spherical surface of radius a . This is given by:
I
1
r Y n .™;¥/ r Y s .™;¥/dS
I
2 0 ǝ B 2 Ǜ S.a/ D
1
1
8 a 2 0
B .r/ B .r/dS
S.1/
S.a/
n.n C 1/
2n C 1 ns mr
I
D
(4.110)
1
8 a 2 0
D
r V.r/ r V.r/dS
We shall use these relations to evaluate the
integral ( 4.106 ). The objective is to find an ex-
pression for the average magnetic energy density
at distance a as a function of the harmonic coef-
ficients. Let us first evaluate the derivatives of the
gradient on a sphere of radius a . We can rewrite
( 4.73 ) as follows:
S.a/
(4.106)
To calculate the integral at the right-hand side
of ( 4.106 ), we must rewrite the general solution
( 4.93 ) in terms of surface harmonics. We first set:
( P n .cos ™/cos m¥ I m 0
P jm n .cos ™/sin j m j ¥ I m<0
(4.107)
Y n .™;¥/ D
@V
@r r C
1
r
@V
@™ C
1
r sin ™
@V
¥
r V D
( g n I m 0
h jm n I m<0
@V
@r r Cr s V
(4.111)
v n .™;¥/ D
(4.108)
Then, using ( 4.109 )wehave:
LJ LJ LJ LJ rDa D a.n C 1/ X
n;m
LJ LJ LJ LJ rDa
Then, the potential can be rewritten as follows:
@V
@r
a nC1 1
r nC2
V.r;™;¥/
v n Y n D .n C 1/ X
n;m
a
r
nC1
D a X
nD1
X
Cn
v n Y n
v n Y n .™;¥/ I r a
(4.112)
mDn
LJ LJ LJ LJ rDa D X
LJ LJ LJ LJ rDa
@Y n
@™
1
r
@V
@™
1
r nC1
(4.109)
a nC1
v n
n;m
The functions Y n (™, ¥) satisfy not only the
conditions ( 4.96 ) but are also subject to additional
conditions of orthogonality for the gradients on
the unit sphere.
D X
n;m
@Y n
@™
v n
(4.113)
 
Search WWH ::




Custom Search