Image Processing Reference
In-Depth Information
47. Pirsch, P., Stolberg, H.J.: VLSI implementations of image and video multimedia pro-
cessing systems. IEEE Transactions on Circuits and Systems for Video Technology 8(7),
878-891 (1998)
48. Rabaey, J.M., Gass, W., Brodersen, R., Nishitani, T.: VLSI design and implementa-
tion fuels the signal-processing revolution: The design and implementation of signal-
processing systems technical committee. IEEE Signal Processing Magazine 15(1),
22-37 (1998)
49. Saponara, S., Fanucci, L., Terreni, P.: Design of a low-power VLSI macrocell for
nonlinear adaptive video noise reduction. Eurasip Journal on Applied Signal Process-
ing 2004(12), 1921-1930 (2004)
50. Sen, B., Anand, A.S., Adak, T., Sikdar, B.K.: Thresholding using quantum-dot cellular
automata. In: 2011 International Conference on Innovations in Information Technology,
IIT 2011, pp. 356-360 (2011)
51. Serra, J.: Image analysis and mathematical morphology: Theoretical advances. Image
Analysis and Mathematical Morphology. Academic Press (1988)
52. Serra, J.: Image Analysis and Mathematical Morphology. Acad. Press (1993)
53. Shamsabadi, A.S., Ghahfarokhi, B.S., Zamanifar, K., Movahedinia, N.: Applying in-
herent capabilities of quantum-dot cellular automata to design: D flip-flop case study.
Journal of Systems Architecture 55(3), 180-187 (2009)
54. Sirakoulis, G.C., Karafyllidis, I., Thanailakis, A.: A CAD system for the construction and
VLSI implementation of cellular automata algorithms using VHDL. Microprocessors
and Microsystems 27(8), 381-396 (2003)
55. Sirakoulis, G.C., Karafyllidis, I., Thanailakis, A., Mardiris, V.: A methodology for VLSI
implementation of cellular automata algorithms using VHDL. Advances in Engineering
Software 32(3), 189-202 (2000)
56. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer (2010)
57. Strauss, W.: Digital signal processing. IEEE Signal Processing Magazine 17(2), 52-56
(2000)
58. Taskin, B., Hong, B.: Improving line-based QCA memory cell design through dual phase
clocking. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 16(12),
1648-1656 (2008)
59. Teja, V.C., Polisetti, S., Kasavajjala, S.: QCA based multiplexing of 16 arithmetic and
logical subsystems-a paradigm for nano computing. In: 3rd IEEE International Confer-
ence on Nano/Micro Engineered and Molecular Systems, NEMS, pp. 758-763 (2008)
60. Toffoli, T.: Cellular automata as an alternative to (rather than an approximation of) dif-
ferential equations in modeling physics. Physica D: Nonlinear Phenomena 10(1-2), 117-
127 (1984)
61. Tougaw, P.D.: A device architecture for computing with quantum dots. Proceedings of
the IEEE 85(4), 541-557 (1997)
62. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata.
Journal of Applied Physics 75(3), 1818-1825 (1994)
63. Tseng, P.C., Chang, Y.C., Huang, Y.W., Fang, H.C., Huang, C.T., Chen, L.G.: Advances
in hardware architectures for image and video coding - a survey. Proceedings of the
IEEE 93(1), 184-197 (2005)
64. Vankamamidi, V., Ottavi, M., Lombardi, F.: A line-based parallel memory for QCA im-
plementation. IEEE Transactions on Nanotechnology 4(6), 690-698 (2005)
65. Vankamamidi, V., Ottavi, M., Lombardi, F.: A serial memory by quantum-dot cellular
automata (QCA). IEEE Transactions on Computers 57(5), 606-618 (2008)
66. Vankamamidi, V., Ottavi, M., Lombardi, F.: Two-dimensional schemes for clock-
ing/timing of QCA circuits. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 27(1), 34-44 (2008)
Search WWH ::




Custom Search