Geoscience Reference
In-Depth Information
B 1 = 3
versus Rayleigh and Ekman numbers in double logarithmic scale. Data of the described experi-
ments in the presence of slope configuration for rotation rates f
Fig. 4 Velocity of radial propagation of the warm buoyant jet, U , nondimensionalized by U
=
2.5, 1.25, 0.8 s 1
¼
Table 1 Overview of the experimental parameters for the rotating case. The radius of the tank
R
39 is the same for all experiments
¼
0
:
3 m and the slope angle
a ¼
f (s 1 )
B (m 3 /s 3 )
Type of markers (see Fig. 4 )
q (Wt/m)
6.37
2.5
10 9
ð
3
3
:
3
Þ
1.25
Þ 10 9
ð
3 : 13 3 : 35
10 9
0.8
ð
3
:
1
3
:
4
Þ
13.1
2.5
10 9
ð
7
:
2
7
:
6
Þ
1.25
Þ 10 9
ð
7 : 3 7 : 8
10 9
0.8
ð
7
:
4
7
:
7
Þ
25.7
2.5
10 8
ð
1
:
5
1
:
6
Þ
1.25
ð
1 : 52 1 : 6
Þ 10 8
0.8
10 8
ð
1
:
5
1
:
56
Þ
1 = 2
B 1 = 3
k T f 2 H
Pr 1 = 2
U
;
(4)
where the Pr number is constant and for the experiments Pr ~ 7.
The regularities for radial velocity of the warm buoyant jet in the rotating tank
with sloping bottom are shown in Fig. 4 . The solid line is the best fit of the predicted
law ( 3 ) to the all-laboratory experiments with the high correlation coefficient
R 2
¼
0.76. The equation of the solid line y
¼
0.76
1.8 gives clear dependence
B 1 = 3 , versus Rayleigh and
of the nondimensional velocity of the buoyant jet, U
=
10 2 . The high
reliability of the linear approximation of the data shown in Fig. 4 proves the evident
dependence of the radial propagation velocity of the buoyant jet on the buoyancy
flux and Coriolis parameters (Table 1 ).
B 1 = 3
Ra 1 = 2 Ek
Ekman numbers as U
=
¼
C 1 ð
Þ
, where C 1 ¼
1
:
2
Search WWH ::




Custom Search