Geoscience Reference
In-Depth Information
T . A i is the cell area and the
E
operator represents
spatial average. Integrating along the n i edges of the i cell and performing a first-
order time integration, ( 5 ) becomes:
n
¼
Fi
þ
Gj with n
¼
ðÞ
i
;
j
hi
X
n i
A i D V hi
Dt þ
L k D ik E
h
n
i ¼
A i Hhi
(6)
k
¼ 1
where L k is the length of the k edge.
The fluxes through the k edge of cell i represent, in the simplest interpretation,
the differences between the values of the independent variables on the adjacent
cells i and j , separated by edge k . D ik represents that difference, through edge k from
cell i to j . The flux variations can be expressed as a function of the independent
conservative variables using an approximate Jacobian matrix, J
n;ik
, orthogonal to the
edge in question:
J
D ik E
h
n
i ¼
n;ik D ik V
hi
(7)
Such approximation arises from the fact that, for the shallow-water-type equa-
tions, even if the problem is hyperbolic, the flux vectors are not homogeneous
functions of the dependent variables F
. Therefore, it is not possible to use
the natural Jacobian of the system, and an approximated matrix, built on the basis
of a local linearization, must be used (Roe 1981 ).
The eigenvalues and the eigenvectors of the approximate Jacobian matrix are
given by:
ð
JU
ðÞ
Þ
l ð 1 Þ
l ð 2 Þ
l ð 3 Þ
ik ¼ð~
u
n
þ ~
c
Þ ik ;
ik ¼ð~
u
n
Þ ik ;
ik ¼ð~
u
n
~
c
Þ ik
(8)
2
3
2
3
2
3
1
1
~
1
e ð 1 Þ
4
5 ik ;
e ð 2 Þ
4
5 ik ;
e ð 3 Þ
4
5 ik
~
ik ¼
u
~
þ ~
ci
jj
~
ik ¼
cj
jj
~
ik ¼
~
u
~
ci
jj
(9)
u
~
þ ~
cj
jj
~
ci
jj
u
~
~
cj
jj
The approximate variables are given by simple arithmetic means (Roe 1981 ).
r
g h i þ
u i
p
u j
p
v i
p
v j
p
h i
þ
h j
h i
þ
h j
h l
~
u ik ¼
p
h i
p
h j
v ik ¼
~
p
h i
p
h j
~
c ik ¼
(10)
2
þ
þ
The dependant variables variations are projected on a new base, formed by the
eigenvectors of the system:
X
3
a ðnÞ
ik e ðnÞ
D hi¼
(11)
ik
1
Search WWH ::




Custom Search