Environmental Engineering Reference
In-Depth Information
20. Yoosaf, K. et al., In situ synthesis of metal nanoparticles and selective naked-eye detection of
lead ions from aqueous media, J. Phys. Chem. C , 111, 12839, 2007.
21. Singh, A.K. et al., Synthesis of highly luorescent water-soluble silver nanoparticles for selective
detection of Pb(II) at the parts per quadrillion (PPQ) level, Chem. Commun ., 48, 9047, 2012.
22. Goswami, N. et al., Copper quantum clusters in protein matrix: Potential sensor of Pb 2+ ion,
Anal. Chem ., 83, 9676, 2011.
23. George, A. et al., Luminescent, freestanding composite ilms of Au 15 for speciic metal ion sens-
ing, ACS Appl. Mater. Interfaces , 4, 639, 2012.
24. Guo, Y. et al., Stable luorescent gold nanoparticles for detection of Cu 2+ with good sensitivity
and selectivity, Analyst , 137, 301, 2012.
25. Liu, X., Zonga, C. and Lu, L., Fluorescent silver nanoclusters for user-friendly detection of Cu 2+
on a paper platform, Analyst , 137, 2406, 2012.
26. Ratnarathorn, N. et al., Simple silver nanoparticles colorimetric sensing for copper by paper-
based devices, Talanta , 99, 552, 2012.
27. Liang, R.P. et al., Label-free colorimetric detection of arsenite utilizing G-/T-rich oligonucle-
otides and unmodiied Au nanoparticles, Chem. Eur. J ., 19, 5029, 2013.
28. Kalluri, J.R. et al., Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic
light scattering assay: Selective detection of arsenic in groundwater, Angew. Chem. Int. Ed ., 48,
9668, 2009.
29. Jena, B.K. and Raj, C.R., Gold nanoelectrode ensembles for the simultaneous electrochemical
detection of ultratrace arsenic, mercury, and copper, Anal. Chem ., 80, 4836, 2008.
30. Li, J. et al., Highly sensitive SERS detection of As 3+ ions in aqueous media using glutathione
functionalized silver nanoparticles, ACS Appl. Mater. Interfaces , 3, 3936, 2011.
31. Senapati, D. et al., A label-free gold-nanoparticle-based SERS assay for direct cyanide detection
at the parts-per-trillion level, Chem. Eur. J ., 17, 8445, 2011.
32. Wang, M. et al., Au 25 (SG) 18 as a luorescent iodide sensor, Nanoscale , 4, 4087, 2012.
33. Zhang, J. et al., Colorimetric iodide recognition and sensing by citrate-stabilized core/shell
Cu@Au nanoparticles, Anal. Chem ., 83, 3911, 2011.
34. Zhang, Z. et al., Label free colorimetric sensing of thiocyanate based on inducing aggregation
of Tween 20-stabilized gold nanoparticles, Analyst , 137, 2682, 2012.
35. Park, G. et al., Full-color tuning of surface plasmon resonance by compositional variation of
Au@Ag core−shell nanocubes with sulphides, Langmuir , 28, 9003, 2012.
36. Nair, A.S., Tom, R.T. and Pradeep, T., Detection and extraction of endosulfan by metal nanopar-
ticles, J. Environ. Monit. , 5, 363, 2003.
37. Nair, A.S. and Pradeep, T., Extraction of chlorpyrifos and malathion from water by metal
nanoparticles, J. Nanosci. Nanotechnol. , 7, 1871, 2007.
38. Pradeep, T. and Nair, A.S. with IIT Madras, A method of preparing puriied water from water
containing pesticides (chlorpyrifos and malathion), Indian Patent 200767, 2006.
39. Pradeep, T. and Nair, A.S. with IIT Madras, A device and a method for decontaminating water
containing pesticides, PCT application, PCT/IN05/0002, 2005.
40. Pradeep, T. and Nair, A.S. with IIT Madras and Eureka Forbes Limited, A method to produce
supported noble metal nanoparticles in commercial quantities for drinking water puriication,
Indian Patent Application, 2007.
41. Lisha, K.P., Anshup and Pradeep, T., Enhanced visual detection of pesticides using gold
nanoparticles, J. Envi. Sci. Health B. , 44, 697, 2009.
42. Bootharaju, M.S. and Pradeep, T., Understanding the degradation pathway of the pesticide,
chlorpyrifos by noble metal nanoparticles, Langmuir , 28, 2671, 2012.
43. Liu, B. et al., Shell thickness-dependent Raman enhancement for rapid identiication and detec-
tion of pesticide residues at fruit peels, Anal. Chem ., 84, 255, 2012.
44. Nair, A.S. and Pradeep, T., Halocarbon mineralization and catalytic destruction by metal
nanoparticles, Curr. Sci. , 84, 1560, 2003.
45. Bootharaju, M.S. et al., Atomically precise silver clusters for eficient chlorocarbon degradation,
J. Mater. Chem. A. , 1, 611, 2013.
Search WWH ::




Custom Search