Environmental Engineering Reference
In-Depth Information
of applications have shown that nanostructured polymers and membranes that have been
synthesized at the nanoscale have shown to exhibit large surface areas and pore sizes
and volumes that enhanced the adsorption/removal of pollutants (physical, chemical, and
microbial) from water. Further study on the use of nanostructured polymers and mem-
branes may result in more robust solutions to the water quality and safety, thus improving
the health status and economy in many societies and communities.
References
1. Trindade M.J., M.I. Dias, J. Coroado, F. Rocha. Mineralogical transformations of calcareous rich
clays with iring: A comparative study between calcite and dolomite rich clays from Algarve.
Portugal. Appl. Clay Sci. , 42: 345-355, 2009.
2. Martin R.T., S.W. Bailey, D.D. Eberl, D.S. Fanning, S. Guggenheim, H. Kodama, D.R. Pevear,
J. Srodon, F.J. Wicks. Report of the Clay Minerals Society Nomenclature Committee: Revised
classiication of clay materials. Clays Clay Miner. , 39: 333-335, 1991.
3. Maes N., I. Heylen, P. Cool, E.F. Vansant. The relation between the synthesis of pillared clays
and their resulting porosity. Appl. Clay Sci. , 12: 43-60, 1997.
4. Rousseaux D.D.J., M. Sclavons, P. Godard, J. Marchand-Brynaert. Carboxylate clays: A model
study for polypropylene/clay nanocomposites. Polym. Degrad. Stab ., 95: 1194-1204, 2010.
5. Zuliqar S., Z. Ahmad, M. Ishaq, M.I. Sarwer. Aromatic-aliphatic polyamide/montmorillon-
ite clay composite materials; synthesis, nanostructure and properties. Mater. Sci. Eng. A , 525:
30-36, 2009.
6. Mishra S.B., A.S. Luyt. Effect of organic peroxides on the morphology, thermal and tensile
properties of EVA/organoclay nanocomposites. Express Polym. Lett. , 2: 256-264, 2008.
7. Cho Y., S. Komarneni. Synthesis of kaolinite from micas and K-depleted micas. Clays Clay
Miner ., 55: 565-571, 2007.
8. Beyer G. Nanocomposites: A new class of lame retardants for polymers. Plast. Addit. Compd. , 4:
22-27, 2002.
9. Madaleno L., J. Schjødt-Thomsen, J.C. Pinto. Morphology, thermal and mechanical properties
of PVC/MMT nanocomposites prepared by solution blending and solution blending þ melt
compounding. Comp. Sci. Technol. , 70: 804-814, 2010.
10. Zhang D., C. Zhou, C. Lin, D. Tong, W. Yu. Synthesis of clay minerals. Appl. Clay Sci. , 50: 1-11, 2010.
11. Zha W., C.D. Han, H.C. Moon, S.H. Han, D.H. Lee, J.K. Kim. Exfoliation of organoclay nano-
composites based on polystyrene-block-polyisoprene-block-poly(2 vinylpyridine) copolymer:
Solution blending versus melt blending. Polymer , 51: 936-952, 2010.
12. Lee J.L., C. Zeng, X. Cia, X. Han, J. Shen, G. Xu. Polymer nanocomposite foams. Comp. Sci.
Technol. , 65: 2344-2363, 2005.
13. Lingaraju D., K. Ramji, N.B.R.M. Rao, U.R. Lakshmi. Characterization and prediction of some
engineering properties of polymer−Clay/Silica hybrid nanocomposites through ANN and
regression models. Procedia Eng ., 10: 9-18, 2011.
14. Fornes T.D., P.J. Yoon, D.L. Hunter, H. Keskkula, D.R. Paul. Effect of organoclay structure on
nylon 6 nanocomposite morphology and properties. Polymer , 43: 5915-5933, 2002.
15. Cho J.W., D.R. Paul. Nylon 6 nanocomposites by melt compounding. Polymer , 42: 1083-1094,
2001.
16. Vaia R.A., E.P. Giannelis. Lattice model of polymer melt intercalation in organically-modiied
layered silicates. Macromolecules , 30: 7990-7999, 1997.
17. Filippi S., E. Mameli, C. Marazzato, P. Magagnini. Comparison of solution-blending and melt-
intercalation for the preparation of poly(ethylene-co-acrylic acid)/organoclay nanocomposites.
Eur. Polym. J. , 43: 1645-1659, 2007.
Search WWH ::




Custom Search