Environmental Engineering Reference
In-Depth Information
32. Q. Li, S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D. Li, and P. J. J. Alvarez. Antimicrobial
nanomaterials for water disinfection and microbial control: Potential applications and implica-
tions. Water Res., 42:4591-4602, 2008.
33. N. F. Savage. Nanotechnology Applications for Clean Water . William Andrew Inc.: New York, 2009.
34. X. Qu, J. Brame, Q. Li, and P. J. J. Alvarez. Nanotechnology for a safe and sustainable water sup-
ply: Enabling integrated water treatment and reuse. Acc. Chem Res., 46:834-843, 2013.
35. J. J. Castellano, S. M. Shaii, F. Ko, G. Donate, T. E. Wright, R. J. Mannari, W. G. Payne, D. J.
Smith, and M. C. Robson. Comparative evaluation of silver-containing antimicrobial dressings
and drugs. Int. Wound J., 4:114-122, 2007.
36. Z. M. Xiu, Q. Zhang, H. L. Puppala, V. L. Colvin, and P. J. J. Alvarez. Negligible particle-speciic
antibacterial activity of silver nanoparticles. Nano Lett., 12:4271-4275, 2012.
37. A. B. G. Lansdown. Biofunctional Textiles and the Skin. Current Problems in Dermatology , vol. 33,
Hipler, U.-C., Elsner, P., Eds. Karger: Basel, Switzerland, pp. 17-34, 2006.
38. N. R. Panyala, E. M. Pena-Mendex, and J. Hovel. Silver or silver nanoparticles: A hazardous
threat to the environment and human health? J. Appl. Biomed., 6:117-129, 2008.
39. USEPA United State Environmental Protection Agency. Drinking water standards, 2001.
Available at http://www.epa.gov/waterscience/drinkingstandards/dwstandards.pdfS.
40. USEPA United State Environmental Protection Agency. Edition of the Drinking Water Standards
and Health Advisories . Ofice of Water U.S. Environmental Protection Agency: Washington, DC.
Report: EPA 822-R-06-013, 2006.
41. F. Heidarpour, W. A. Wan Ab Karim Ghani, A. Fakhru'l-Razi, S. Sobri, V. Heydarpour, M. Zargar,
and M. R. Mozafari. Complete removal of pathogenic bacteria from drinking water using nano
silver-coated cylindrical polypropylene ilters. Clean Techn. Environ. Policy, 13:499-507, 2011.
42. Available at http://www.wrc.org.za/Pages/DisplayItem.aspx?ItemID=8772&FromURL=%2F
Pages%F Default.aspx%3F.
43. A. Alonso, X. M. Berbel, N. Vigués, R. R. Rodríguez, J. Macanás, M. Muñoz, J. Mas, and D. N.
Muraviev. Superparamagnetic Ag@Co-nanocomposites on granulated cation exchange poly-
meric matrices with enhanced antibacterial activity for the environmentally safe puriication of
water. Adv. Funct. Mater., 23:2450-2458, 2013.
44. V. Sambhy, M. M. MacBride, B. R. Peterson, and A. Sen. Silver bromide nanoparticle/polymer
composites: Dual action tunable antimicrobial materials. J. Am. Chem. Soc., 128:9798-9808, 2006.
45. J. Liang, J. R. Owens, T. S. Huang, and S. D. Worley. Biocidal hydantoinylsiloxane polymers IV.
N -halamine siloxane-functionalized silica gel. J. Appl. Polym. Sci., 101:3448-3454, 2006.
46. A. O. Hayden, B. B. Hsu, A. M. Klibanov, and A. Z. Gu. An antimicrobial polycationic sand ilter
for water disinfection. Water Sci. Technol., 63:1997-2003, 2011.
47. S. Malato, P. Fernández-Ibáñez, M. I. Maldonado, J. Blanco, and W. Gernjak. Decontamination
and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today,
147:1-59, 2009.
48. Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, and A. Fujishima. Photocatalytic bactericidal
effect of Ti0 2 thin ilms: Dynamic view of the active oxygen species responsible for the effect.
J. Photochem. Photobiol. A. Chem., 106:51-56, 1997.
49. Y. Tian, and T. Tasuma. Mechanisms and applications of plasmon-induced charge separation at
TiO 2 ilms loaded with gold nanoparticles. J. Am. Chem. Soc., 127:7632-7637, 2005.
50. K. L. Kelly, and K. Yamashita. Nanostructure of silver metal produced photocatalytically in TiO 2
ilms and the mechanism of the resulting photochromic behavior. J. Phys. Chem. B., 110:7743-
7749, 2006.
51. K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and
T.  Watanabe. A plasmonic photocatalyst consisting of silver nanoparticles embedded in tita-
nium dioxide. J. Am. Chem. Soc., 130:1676-1680, 2008.
52. T. Hirakawa, and P. V. Kamat. Charge separation and catalytic activity of Ag@TiO 2 core-shell
composite clusters under UV-irradiation J. Am. Chem. Soc., 127:3928-3934, 2005.
53. C. Hu, Y. Lan, J. Qu, X. Hu, and A. Wang. Ag/AgBr/TiO 2 visible light photocatalyst for destruc-
tion of azodyes and bacteria. J. Phys. Chem. B., 110:4066-4072, 2006.
Search WWH ::




Custom Search