Environmental Engineering Reference
In-Depth Information
9. Holl J.W., Billet M.L. and Weir D.S. Thermodynamic effects on developed cavitation. J. Fluids
Eng. 103(4), 534-542 (1981). doi: 10.1115/1.3241762.
10. Watanabe S., Hidaka T., Horiguchi H., Furukawa A. and Tsujimoto Y. Steady analysis of thermo-
dynamic effect of partial cavitation using singularity method. Proc. of FEDSM 2005 , Houston,
TX, June 19-23 (2005).
11. Callenaere M., Franc J.P. and Michel J.M. The cavitation instability induced by the development
of a re-entrant jet. J. Fluid Mech. 444, 223-256 (2001).
12. Harada H. Sonophotocatalytic decomposition of water using TiO 2 photocatalyst. Ultrason.
Sonochem. 8(1), 55-58 (2001).
13. Gogate P., Rajiv K., Pandit A. and Tayal R. Cavitation: A technology on the horizon. Curr. Sci.
91(1), 35-46 (2006).
14. Kavitha S.K. and Palanisamy P.N. Photocatalytic and sonophotocatalytic degradation of
Reactive Red 120 using dye sensitized TiO 2 under visible light. World Acad. Sci. Eng. Technol.
5(1), 1-6 (2011).
15. Joseph C.G., Li Puma G., Bono A. and Krishnaiah D. Sonophotocatalysis in advanced oxidation
process: A short review. Ultrason. Sonochem. 16(5):583-589 (2009).
16. Wu Y., Huang Y., Zhou Y., Ren X. and Yang F. Degradation of chitosan by swirling cavitation.
Innovative Food Sci. Emerging Technol. 23, 188-193 (2014).
17. Taghizadeh M.T. and Abdollahi R. Sonolytic, sonocatalytic and sonophotocatalytic degradation
of chitosan in the presence of TiO 2 nanoparticles. Ultrason. Sonochem. 18(1), 149-57 (2011).
18. Frenzel H. and Schultes H. Z. Phys. Chem. B27, 421 (1934).
19. (a) Marinesco N. and Trillat J.J. Proc. R. Acad. Sci. 196, 858. (1933). (b) Walton A.J. and Reynolds
G.T. Adv. Phys. 33, 595 (1984).
20. Gaitan D.F., Crum L.A., Roy R.A. and Church C.C. J. Acoust. Soc. Am. 91, 3166 (1992).
21. Gaitan, D. F. Transient cavitation in high-quality-factor resonators at high static pressures.
J. Acoust. Soc. Am 127(6), 3456-3465, 20 (2010).
22. Diodati P. and Giannini G. Cavitation damage on metallic plate surfaces oscillating at 20 kHz.
Ultrason. Sonochem. 8(1), 49-53 (2001).
23. Suslick K.S., Didenko Y., Fang M.M., Hyeon T., Kolbeck K.J., McNamara W.B. III, Mdleleni
M.M.  and Wong M. Acoustic cavitation and its chemical consequences. Phil. Trans. Roy. Soc.
London A , 1999, 357, 335-353 (1999). Available at http://www.scs.illinois.edu/suslick/documents
/nature.030205.pdf.
24. Flannigan D.J. and Suslick K.S. Plasma formation and temperature measurement during single-
bubble cavitation. Nature 434, 52-55 (2005).
25. Suslick K.S. and Flint E.B. Sonoluminescence of non-aqueous liquids. Nature 1987, 330, 553-555.
(1987).
26. Matula T.J. and Crum L.A. Evidence for gas exchange in single-bubble sonoluminescence. Phys.
Rev. Lett. 80, 865 (1998).
27. Brenner M., Hilgenfeldt S. and Lohse D. Single bubble sonoluminescence. Rev. Mod. Phys. 74(2),
425-484 (2002). doi: 10.1103/RevModPhys.74.425.
28. Milton K.A. High energy theory—quantum ield theory—Casimir effect. World Scientiic (2001).
Available at http://arxiv.org/pdf/hep-th/0010140.pdf.
29. Liberati S., Belgiorno F. and Visser M. Dimensional and dynamical aspects of the Casimir effect:
Understanding the reality and signiicance of vacuum energy. Available at http://arxiv.org
/abs/hep-th/0010140v1.
30. Shirsath S.R., Pinjari D.V., Gogate P.R., Sonaware S.H., Pandit A.B. Ultrasound assisted synthe-
sis of doped TiO2 nano-particles: Characterization and comparison of effectiveness for photo-
catalytic oxidation of dyestuff efluent. Ultrason. Sonochem . 20(1), 277-286 (2013).
31. Chand R. General Organic Acoustic, Hydrodynamic Oxidation . University of Abertay, Scotland.
Available at http://hdl.handle.net/10373/839.
32. Dynalow Inc. J MD. Hydrodynamic Oxidation and Disinfection, CFD. Available at http://
www.dynalow-inc.com/Products/Brochures/Oxidation_Trifolded.pdf.
Search WWH ::




Custom Search