Biomedical Engineering Reference
In-Depth Information
2.6
Conclusions
It was demonstrated in this chapter that fiber network formation in SMGs is
thermodynamically controlled by a nucleation and growth mechanism. On the
basis of this mechanism, the dynamics and kinetics of fiber nucleation and
growth can be controlled through tuning the thermodynamic driving force or
using suitable additives. This enables the micro/nanometer scale control of fiber
formation, leading to the production of materials with tunable fiber network
structure and macroscopic properties. Interestingly, when the network formation
is confined in a limited space, the significance of thermodynamic driving force is
reduced. Gels with homogeneous and tenable fiber network size can be obtained
in this case. The volume confinement effect is a subject of interest for further
investigation.
References
1.
(a) Hanabusa, K., Naka, Y., Koyama,
T., and Shirai, H. (1994) J. Chem.
Soc., Chem. Commun. , 2683-2684.
(b) Hanabusa, K., Yamada, M., Kimura,
M., and Shirai, H. (1996) Angew. Chem.
Int. Ed. Engl. ,
Miravet, J.F., Escuder, B., Castelletto, V.,
Hamley, I.W., and Smith, D.K. (2008)
J. Am. Chem. Soc. , 130 , 9113-9121.
(g) Jonkheijm, P., van der Schoot, P.,
Schenning, A., and Meijer, E.W. (2006)
Science ,
, 1949-1951. (c) de
Loos, M., Ligtenbarg, A.G.J., van Esch,
J., Kooijman, H., Spek, A.L., Hage, R.,
Kellogg, R.M., and Feringa, B.L. (2000)
Eur. J. Org. Chem. , 3675-3678. (d) van
Esch, J.H. and Feringa, B.L. (2000)
Angew. Chem. Int. Ed. ,
35
313
, 80-83.
(a) Tang, S.K., Liu, X.Y., and Strom,
C.S. (2009) Adv. Funct. Mater. ,
4.
,
2252-2259. (b) Liu, X.Y. and Sawant,
P.D. (2002) Angew. Chem. Int. Ed. ,
41
19
, 3641-3645. (c) Li, J.L. and Liu,
X.Y. (2009) J. Phys. Chem. B ,
39
, 2263-2266.
113
,
(a) van Esch, J.H. (2009) Langmuir ,
25
2.
,
8392-8394. (b) Hirst, A.R., Escuder, B.,
Miravet, J.F., and Smith, D.K. (2008)
Angew. Chem. Int. Ed. ,
15467-15472.
5. Li, J.L., Liu, X.Y., Wang, R.Y., and
Xiong, J.Y. (2005) J. Phys. Chem. B ,
109
,
, 8002-8018.
(c) Nakano, K., Hishikawa, Y., Sada, K.,
Miyata, M., and Hanabusa, K. (2000)
Chem. Lett. ,
47
24231-24235.
6.
(a) Li, J.L. and Liu, X.Y. (2005) Appl.
Phys. Lett. ,
, 113103. (b) Li, J.L., Liu,
X.Y., Strom, C.S., and Xiong, J.Y. (2006)
Adv. Mater. ,
87
29
, 1170-1171.
3.
(a) Bielejewski, M., Lapinski, A.,
Luboradzki, R., and Tritt-Goc, J. (2009)
Langmuir ,
, 2574-2578. (c) Liu, X.Y.,
Sawant, P.D., Tan, W.B., Noor, I.B.M.,
Pramesti, C., and Chen, B.H. (2002) J.
Am. Chem. Soc. ,
18
, 8274-8279. (b) Jeong, Y.,
Hanabusa, K., Masunaga, H., Akiba, I.,
Miyoshi, K., Sakurai, S., and Sakurai, K.
(2005) Langmuir , 21 , 586-594. (c) Zhu,
G.Y. and Dordick, J.S. (2006) Chem.
Mater. , 18 , 5988-5995. (d) Rogers, M.A.
and Marangoni, A.G. (2009) Langmuir ,
25 , 8556-8566. (e) Huang, Y.Q., Liao,
F.L., Zheng, W.R., Liu, X.L., Wu, X.J.,
Hong, X.L., and Tsang, S.C. (2010)
Langmuir , 26 , 3106-3114. (f) Hirst,
A.R., Coates, I.A., Boucheteau, T.R.,
25
, 15055-15063.
7. Li, J.-L. and Liu, X.-Y. (2010) Adv. Funct.
Mater. , 20 , 3196-3216.
8. Liu, X.Y. and Sawant, P.D. (2002) Adv.
Mater. , 14 , 421-426.
9. Shi, J.H., Liu, X.Y., Li, J.L., Strom, C.S.,
and Xu, H.Y. (2009) J. Phys. Chem. B ,
113 , 4549-4554.
124
10.
(a) Liu, X.Y. (2000) J. Chem. Phys. , 112 ,
9949-9955. (b) Salam, A., Lohmann,
U., Crenna, B., Lesins, G., Klages, P.,
Search WWH ::




Custom Search