Image Processing Reference
In-Depth Information
160. Schowengerdt, R.: Remote Sensing: Models and Methods for Image Processing, 3rd edn.
Academic, New York (2007)
161. Schultz, R.A., Nielsen, T., Zavaleta, J., Ruch, R.,Wyatt, R., Garner, H.: Hyperspectral imaging:
a novel approach for microscopic analysis. Cytometry 43 (4), 239-247 (2001)
162. Shah, V.P., Younan, N.H., King, R.L.: An efficient pan-sharpening method via a combined
adaptive PCA approach and contourlets. IEEE Trans. Geosci. Remote Sens. 46 (5), 1323-1335
163. Sharma, R.: Probabilistic model-based multisensor image fusion. Ph.D. thesis, Oregon Insti-
tute of Science and Technology, Portland, Oregon (1999)
164. Sharma, R., Leen, T.K., Pavel, M.: Bayesian sensor image fusion using local linear generative
models. Opt. Eng. 40 (7), 1364-1376 (2001)
165. Shaw, G., Manolakis, D.: Signal processing for hyperspectral image exploitation. IEEE Signal
Process. Mag. 19 (1), 12-16 (2002)
166. Sifakis, E., Garcia, C., Tziritas, G.: Bayesian level sets for image segmentation. J. Vis. Com-
mun. Image Represent. 13 (1-2), 44-64 (2002)
167. Simoncelli, E., Freeman, W.: The steerable pyramid: a flexible architecture for multi-scale
derivative computation. In: Proceedings of International Conference on Image Processing,
vol. 3, pp. 444-447, Washington DC, USA (1995)
168. Smith, R.: Introduction to hyperspectral imaging. Technical report, Microimages Inc (2012)
169. Smith, S.M., Brady, J.M.: SUSAN: a new approach to low level image processing. Int. J.
Comput. Vis. 23 (1), 45-78 (1997)
170. Strachan, I.B., Pattey, E., Boisvert, J.B.: Impact of nitrogen and environmental conditions on
corn as detected by hyperspectral reflectance. Remote Sens. Environ. 80 (2), 213-224 (2002)
171. Tatzer, P., Wolf, M., Panner, T.: Industrial application for inline material sorting using hyper-
spectral imaging in the NIR range. Real-Time Imaging 11 (2), 99-107 (2005)
172. Toet, A.: Hierarchical image fusion. Mach. Vis. Appl. 3 (1), 1-11 (1990)
173. Toet, A., Franken, E.M.: Perceptual evaluation of different image fusion schemes. Displays
24 (1), 25-37 (2003)
174. Toet, A., Toet, E.: Multiscale contrast enhancement with applications to image fusion. Opt.
Eng. 31 , 1026-1031 (1992)
175. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of
International Conference on Computer Vision, pp. 839-846, Bombay, India (1998)
176. Tsagaris, V., Anastassopoulos, V., Lampropoulos, G.: Fusion of hyperspectral data using
segmented PCT for color representation and classification. IEEE Trans. Geosci. Remote Sens.
43 (10), 2365-2375 (2005)
177. Tyo, J., Konsolakis, A., Diersen, D., Olsen, R.: Principal-components-based display strategy
for spectral imagery. IEEE Trans. Geosci. Remote Sens. 41 (3), 708-718 (2003)
178. Vaidyanathan, P.P.: Multirate Systems and Filter Banks. Pearson Education, London (1993)
179. Vo-Dinh, T.: A hyperspectral imaging system for in vivo optical diagnostics. IEEE Eng. Med.
Biol. Mag. 23 (5), 40-49 (2004)
180. Wald, L.: Some terms of reference in data fusion. IEEE Trans. Geosci. Remote Sens. 37 (3),
1190-1193 (1999)
181. Wang, H., Peng, J., Wu, W.: Fusion algorithm for multisensor images based on discrete
multiwavelet transform. IEE Proc. Vis. Image Signal Process. 149 (5), 283-289 (2002)
182. Wang, Q., Shen, Y., Zhang, Y., Zhang, J.: A quantitative method for evaluating the perfor-
mances of hyperspectral image fusion. IEEE Trans. Instrum. Meas. 52 (4), 1041-1047 (2003)
183. Wang, Z., Bovik, A.: A universal image quality index. IEEE Signal Process. Lett. 9 (3), 81-84
184. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: fromerror visibility
to structural similarity. IEEE Trans. Image Process. 13 (4), 600-612 (2004)
185. Wang, Z., Bovik, A.C., Lu, L.: Why is image quality assessment so difficult? In: Proceedings
of International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 3313-
3316, Florida, USA (2002)
Search WWH ::

Custom Search