Environmental Engineering Reference
In-Depth Information
References
Adolphe, J.M., Loubiere, J.F., Paradas, J., and Soleilhavoup, F. (1990), Procédée de traitement
biologique d'une surface artiicielle. European Patent 90400G97.0 (after French Patent 8903517,
1989).
Bachmeier, K.L., Williams, A.E., Warmington, J.R., and Bang, S.S. (2002), Urease activity in microbio-
logically-induced calcite precipitation, Journal of Biotechnology, 93:171-181.
Bang, S.S., Galinat, J.K., and Ramakrishnan, V. (2001), Calcite precipitation induced by polyurethane-
immobilized Bacillus pasteurii, Enzyme and Microbial Technology, 28:404-409.
Castanier, S., Métayer-Levrel, G.L., and Perthuisot, J.P. (1999), Ca-carbonates precipitation and lime-
stone genesis—The microbiogeologist point of view, Sedimentary Geology, 126:9-23.
Ciurli, S., Marzador, C., Benini, S., Deiana, S., and Gessa, C. (1996), Urease from the soil bacte-
rium Bacillus pasteurii : Immobilization on Ca-polygalacturonate, Soil Biology and Biochemistry ,
28(6):811-817.
De Muryncka, W., De Beliea, N., and Verstraete, W. (2010), Microbial carbonate precipitation in con-
struction materials: A review, Ecological Engineering , 36:118-136.
DeJong, J.T., Fritzges, M.B., and Nüsslein, K. (2006), Microbially induced cementation tp control sand
response to undrained shear, Journal of Geotechnical and Geoenvironmental Engineering , ASCE ,
1381-1392.
Ferris, F.G., Phoenix, V., Fujita, Y., and Smith, R.W. (2003), Kinetics of calcite precipitation induced
by ureolytic bacteria at 10 to 20°C in artiicial groundwater , Geochimica et Cosmochimica Acta ,
67(8):1701-1722.
Fukue, M., Nakamura, T., Kato, Y., and Naoe, K. (1996), Correlation among carbonate content, accu-
mulation rate and topography of seabed, Soils and Foundations , 36(1):51-60.
Fukue, M., Nakamura, T., and Kato, Y. (1999), Cementations of soils due to calcium carbonate, Soils
and Foundations , 39:55-64.
Fukue, M., Fujimori, Y., Sato, Y., Nakagawa, T., and Mulligan, C.N. (2010), Evidence of the production
and dissolution of carbonate phases in bentonite formations, Applied Clay Science , 47:133-138.
Fukue, M., Ono, S., and Sato, Y. (2011), Cementation of sands due to microbiologically-induced car-
bonate precipitation, Soils and Foundations , 51(1):83-93.
Fukue, M., Ono, S., Sato, Y., Sakamoto, I., and Iwata, T. (2012), A transport technique of microbes for
soil improvement using microbial precipitation of carbonates, Proc. 15th International Conf. on
Experimental Mechanics, pp. 1-14.
Fukue, M., Ono, S., Sato, Y., Sakamoto, I., Iwata, T., and Mulligan, C.N. (2013), Microbial cementation
of dry sands by injecting microbes and chemical agents, Proc. of the 3rd Annual International
Conference on Advances in Biotechnology, BIOTECH 2013, Singapore, pp. 17-22.
Khadkikar, A.S. and Rajshekhar, C. (2003), Microbial cements in Holocene beachrocks of South
Andaman Islands, Bay of Bengal, Research Communications, Current Science , 84(7):933-936.
Lian, B., Hu, Q., Chen, J., Ji, J., and Henry, T.H. (2006), Carbonate biomineralization induced by soil
bacterium Bacillus megaterium , Geochimica et Cosmochimica Acta , 70:5522-5535.
Moore, C.H. (2001), Carbonate Reservoirs, Porosity Evolution and Diagenesis in a Sequence Stratigraphic
Framework , Elsevier, 444 pp.
Morad, S., (ed.) (1998), Carbonate Cementation in Sandstones, Special Publication Number of 26 of
the International Association of Sedimentologists, p. 511.
Morse, J.W. (2005), Formation and Diagenesis of Carbonate Sediments, Sediments, Diagenesis and
Sedimentary Rocks , F.T. Mackenzie (ed.), Elsevier Ltd., pp. 67-85.
Neumeier, U. (1999), Experimental modelling of beachrock cementation under microbial inluence,
Sedimentary Geology , 126:35-46.
Scheibe, T.D., Dong, H., and Xie, Y. (2007), Correlation between bacterial attachment rate coefi-
cients and hydraulic conductivity and its effect on ield-scale bacterial transport, Advances in
Water Resources , 30:1571-1582.
Search WWH ::




Custom Search