Environmental Engineering Reference
In-Depth Information
Thus, we obtain
+
u
=
W Ψ (
r
, θ , ϕ ,
t
)=
1 (
b mnl cos m
ϕ +
d mnl sin m
ϕ )
m
,
n
=
0
,
l
=
j n μ (
r sin
)
2
n
+
P n (
×
cos
θ )
l
ω nl t
,
a 0
μ (
1
2
)
n +
1
l
b 0 nl =
Ψ (
r
, θ , ϕ )
P n (
cos
θ )
j n
r
2
πω nl M 0 nl
a 0
r
a 0
r 2 sin
×
ϕ ,
θ
d
θ
d r d
(2.59)
μ (
1
2
)
n +
1
πω nl M mnl
P n (
l
b mnl =
Ψ (
r
, θ , ϕ )
cos
θ )
j n
r
a 0
r
a 0
r 2 cos m
×
ϕ
sin
θ
d
θ
d r d
ϕ ,
μ (
1
2
)
n +
1
πω nl M mnl
P n (
l
d mnl =
Ψ (
r
, θ , ϕ )
cos
θ )
j n
r
a 0
r
a 0
r 2 sin m
×
ϕ
sin
θ
d
θ
d r d
ϕ ,
π
0 [
θ = (
n
+
m
)
!
2
2 sin
P n (
where M mnl =
M mn M nl , M mn
=
cos
θ )]
θ
d
1 is the
(
n
m
)
!
2 n
+
, M nl is the normal square of j n
a 0
normal square of P n (
μ (
1
2
)
n
+
cos
θ )
r
/
l
(
n fixed
,
l
=
1
,
2
, ··· )
and can be determined by Eq. (2.47) in Section 2.5 as
Boundary
condition
of the first
kind
J n +
2
μ (
1
2
)
n
+
,
3
2
l
,
Boundary
condition
of the
second kind
n
(
n
+
1
)
μ (
1
2
)
n +
J n +
a 0
1
,
π
2
1
2
l
M nl =
μ (
1
2
)
n
+
μ (
2
)
n +
,
4
l
l
Boundary
condition
of the
third kind
+ (
ha 0 +
n
)(
ha 0
n
1
)
μ (
1
2
)
n
+
J n +
1
,
2
2
l
μ (
)
2
n
+
.
l
 
Search WWH ::




Custom Search