Environmental Engineering Reference
In-Depth Information
Appendix B
Integral Transformations
B.1 Fourier Integral Transformation
B.1.1 Fourier Integral
A periodic function can be expanded into a Fourier series. We show here that a non-
periodic function can be expressed by using a Fourier integral.
Fourier Series of Exponential Form
of period T satisfies the Dirichlet condition, it can be
expanded into a Fourier series. Therefore, at any continuous point of g
If a periodic function g
(
t
)
(
t
)
we have
a 0
2 +
+
n = 1 (
g
(
t
)=
a n cos n
ω
t
+
b n sin n
ω
t
)
T
2
2
T
a n =
g
(
t
)
cos n
ω
t d t
,
n
=
0
,
1
,
2
, ··· ,
2
T
2
2
T
b n =
g
(
t
)
sin n
ω
t d t
,
n
=
1
,
2
, ··· ,
2
2
T . By applying the Euler formula e ± i n ω t
where
ω =
=
cos n
ω
t
±
isin n
ω
t ,wehave
a n
e i n ω t
+
n = 1
a 0
2 +
i b n
a n +
i b n
e i n ω t
g
(
t
)=
+
.
2
2
Let
a 0
2 ,
a n
i b n
a n
+
i b n
c 0 =
c n =
,
c n =
,
n
=
1
,
2
, ··· .
2
2
Search WWH ::




Custom Search