Environmental Engineering Reference
In-Depth Information
R
F
r 2 sin
r 0 r 2
(
, θ , ϕ )
.
r
θ
d
θ
d
ϕ
d r
2 R 2 r 0 r cos
R 4
ψ +
Here the coordinates of M 0 are
(
r 0 , θ 0 , ϕ 0 )
and the area element d S on surface r
=
R
is
R 2 sin
d S
=
θ
d
θ
d
ϕ .
Remark 1 .When F
(
M
)=
0, the solution reduces to
π
R 2
r 0
R
4
u
(
r 0 , θ 0 , ϕ 0 )=
3
/ 2
π
r 0 +
R 2
(
2 r 0 R cos
ψ )
0
0
·
f
(
R
, θ , ϕ )
sin
θ
d
θ
d
ϕ
(7.115)
which is called the Poisson formula for problems in a sphere .
Remark 2 .Let e 0 and e be the unit vectors of OM 0 and OM , respectively.
Since
e 0 =(
sin
θ 0 cos
ϕ 0 ,
sin
θ 0 sin
ϕ 0 ,
cos
θ 0 ) ,
e
=(
sin
θ
cos
ϕ ,
sin
θ
sin
ϕ ,
cos
θ ) ,
we have
cos
ψ =
e 0 ·
e
=
sin
θ
sin
θ 0 (
cos
ϕ
cos
ϕ 0 +
sin
ϕ
sin
ϕ 0 )+
cos
θ
cos
θ 0
=
sin
θ
sin
θ 0 cos
( ϕ ϕ 0 )+
cos
θ
cos
θ 0 .
Remark 3 . For the external problems in the domain x 2
y 2
z 2
R 2 ,
+
+
>
G
n =
G
r .
The solution of external problems thus differs from that in Eq. (7.115) only by a
sign, i.e.
π
r 0
R 2
R
4
u
(
r 0 , θ 0 , ϕ 0 )=
f
(
R
, θ , ϕ )
sin
θ
d
θ
d
ϕ ,
π
3
/ 2
r 0 +
(
R 2
2 r 0 R cos
ψ )
0
0
: x 2
y 2
z 2
R 2 .
where M 0 (
r 0 , θ 0 , ϕ 0 )
is a point outside the sphere
Ω
+
+
<
Search WWH ::




Custom Search