Environmental Engineering Reference
In-Depth Information
series,
m = 1 Γ m ( t ) sin ( β m x ) ,
T
(
x
,
t
)=
(6.240)
m = 1 D m sin ( β m x ) ,
g
(
x
)=
(6.241)
where
Γ m (
t
)
and
β m are defined in Section 6.10.1, and
l
2
l
D m =
g
(
x
)
sin
( β m x
)
d x
.
(6.242)
0
in Eq. (6.240) automatically satisfies the boundary conditions in
Eq. (6.209). Substituting Eqs. (6.240) and (6.241) into the equation of (6.209) and
making use of the orthogonality of the set
T
(
x
,
t
)
{
sin
( β m x
) }
yields
QD m α
k
¨
ζ m ω m ˙
2
m
e t
Γ m (
t
)+
2
Γ m (
t
)+ ω
Γ m (
t
)=
(
1
+
i
Ωτ q )
,
(6.243)
τ q
whose solution is readily obtained as
B m e ( Ω t + ϕ m ) i
Γ
(
t
)=
.
(6.244)
m
Here,
QD m
α
B m =
B Ω m ,
(6.245)
k
ω m
Ω m
η m +
i
B Ω m =
Ω m ,
(6.246)
Ω m )
2
m
(
1
+
4
ζ
ζ m Ω m
2
tan 1
( ϕ m )=
Ω m ,
(6.247)
1
1
ατ
η m =
m ,
(6.248)
β
q
Ω m = Ω
ω
m .
(6.249)
For resonance, B Ω m
2
reaches its maximum value. Note that, by Eq. (6.246),
B Ω m
+ Ω m
2
m
η
2
=
Ω m .
(6.250)
(
1
Ω m )
2
+
4
ζ
m
Therefore, resonance requires
B Ω m
2
∂Ω m =
0
,
 
Search WWH ::




Custom Search