Environmental Engineering Reference
In-Depth Information
Thus the u
(
r
, θ , ϕ ,
t
)
that satisfies the equation and the boundary conditions of
PDS (6.141) is
)= m , n , l e α nl t
u
(
r
, θ , ϕ ,
t
[(
A mnl cos
β nl t
+
B mnl sin
β nl t
)
cos m
ϕ
P n (
+(
C mnl cos
β nl t
+
D mnl sin
β nl t
)
sin m
ϕ ]
cos
θ )
j n (
k nl r
) .
(6.145)
Applying the initial condition u
(
r
, θ , ϕ ,
0
)=
0 yields A mnl =
C mnl =
0. B mnl and D mnl
can also be determined by applying the initial condition u t (
r
, θ , ϕ ,
0
)= ψ (
r
, θ , ϕ )
.
Finally we obtain the solution of PDS (6.141)
)= m , n , l e α nl t
u
=
W ψ (
r
, θ , ϕ ,
t
(
B mnl cos m
ϕ +
D mnl sin m
ϕ )
P n (
·
cos
θ )
j n (
k nl r
)
sin
β nl t
,
1
M mnl β nl
P n (
r 2 cos m
B mnl =
ψ (
r
, θ , ϕ )
cos
θ )
j n (
k nl r
)
ϕ
sin
θ
d
θ
d r d
ϕ ,
r
a
1
M mnl β nl
P n (
r 2 sin m
D mnl =
ψ (
, θ , ϕ )
θ )
(
)
ϕ ,
r
cos
j n
k nl r
ϕ
sin
θ
d
θ
d r d
r a
(6.146)
where M mnl is the product of three normal squares.
6.7.2 Solution from
Φ (
r
, θ , ϕ )
Theorem 1 .Let u
=
W ψ (
r
, θ , ϕ ,
t
)
be the solution of PDS (6.141). The solution of
u t
τ 0 +
B 2
A 2
u tt =
Δ
u
(
r
, θ , ϕ ,
t
)+
t Δ
u
(
r
, θ , ϕ ,
t
)
0
<
r
<
a
,
0
< θ < π ,
0
ϕ
2
π ,
0
<
t
,
(6.147)
L
(
u
,
u r ) | r = a =
0
,
u
(
r
, θ , ϕ ,
0
)= Φ (
r
, θ , ϕ ) ,
u t (
r
, θ , ϕ ,
0
)=
0
is
1
W Φ (
τ 0 +
B 2 W k nl Φ (
u
(
r
, θ , ϕ ,
t
)=
r
, θ , ϕ ,
t
)+
r
, θ , ϕ ,
t
) .
t
Proof . Following a similar approach as that in Section 6.7.1, we obtain the
u
(
r
, θ , ϕ ,
t
)
that satisfies the equation and the boundary condition of PDS (6.147)
)= m , n , l e α nl t
u
(
r
, θ , ϕ ,
t
[(
A mnl cos
β nl t
+
B mnl sin
β nl t
)
cos m
ϕ
P n (
+(
C mnl cos
β nl t
+
D mnl sin
β nl t
)
sin m
ϕ ]
cos
θ )
j n (
k nl r
) .
(6.148)
Search WWH ::




Custom Search