Environmental Engineering Reference
In-Depth Information
Assume u
=
T
(
t
)
v
(
r
, θ , ϕ )
. Substituting it into the equation of PDS (6.141) yields,
k 2 as the separation constant,
with
λ =
1
T +
τ 0 T
B 2 T = Δ
v
(
r
, θ , ϕ )
k 2
, θ , ϕ ) = λ =
.
A 2 T
+
v
(
r
Thus we arrive at
1
τ 0 + λ
B 2 T (
T (
A 2 T
t
)+
t
)+ λ
(
t
)=
0
(6.142)
and
k 2 v
(
, θ , ϕ )+
(
, θ , ϕ )=
,
<
<
,
< θ < π ,
Δ
v
r
r
0
0
r
a
0
(6.143)
L
(
v
,
v r
) | r = a =
0
.
The solution of the latter is available in Section 2.6.2
P n (
v mnl (
r
, θ , ϕ )=(
a mnl cos m
ϕ +
b mnl sin m
ϕ )
cos
θ )
j n (
k nl r
) ,
m
n
,
a 2
n
2
1
+
k nl =
where constants a mnl and b mnl are not all zero,
λ =
μ
, n
=
l
n +
2
1
0
,
1
,
2
, ···
, l
=
1
,
2
, ···
and the
μ
are available in Section 2.6.2. Substituting
l
a 2
n +
2
1
k nl =
λ =
μ
into Eq. (6.142) yields
l
1
τ 0 +(
2 T nl (
T
nl
2 T nl (
(
t
)+
k nl B
)
t
)+(
k nl A
)
t
)=
0
.
Its characteristic roots read
1
τ 0 +(
1
τ 0 +(
2
2 2
2
k nl B
)
±
k nl B
)
4
(
k nl A
)
r 1 , 2 =
(6.144)
2
= α nl ± β nl i
.
Thus
e α nl t
T nl (
t
)=
(
c nl cos
β nl t
+
d nl sin
β nl t
) .
 
Search WWH ::




Custom Search