Environmental Engineering Reference
In-Depth Information
6.6.2 Solution from
ϕ (
r
, θ ,
z
)
Theorem 1 .Let u
(
r
, θ ,
z
,
t
)=
W ψ (
r
, θ ,
z
,
t
)
be the solution of
u t
τ 0 +
B 2
A 2
u tt =
Δ
u
(
r
, θ ,
z
,
t
)+
t Δ
u
(
r
, θ ,
z
,
t
)
Ω × (
0
, + ) ,
(6.124)
L
(
u
,
u r ,
u z ) | ∂Ω =
0
,
u
(
r
, θ ,
z
,
0
)=
0
,
u t (
r
, θ ,
z
,
0
)= ψ (
r
, θ ,
z
) .
The solution of
u t
τ 0 +
B 2
A 2
u tt
=
Δ
u
(
r
, θ ,
z
,
t
)+
t Δ
u
(
r
, θ ,
z
,
t
)
Ω × (
0
, + ) ,
(6.125)
L
(
u
,
u r ,
u z ) | ∂Ω =
0
,
u
(
r
, θ ,
z
,
0
)= ϕ (
r
, θ ,
z
) ,
u t (
r
, θ ,
z
,
0
)=
0
is
1
W ϕ (
τ 0 +
B 2 W
u
(
r
, θ ,
z
,
t
)=
r
, θ ,
z
,
t
)+
k ) ϕ (
r
, θ ,
z
,
t
) ,
2
( k mn + λ
t
where k mn and
2
k are the eigenvalues
λ ( 2 ) and
λ ( 3 ) in Section 6.6.1.
λ
Proof. By following a similar approach in Section 6.6.1, we have u
(
r
, θ ,
z
,
t
)
satis-
fying the equation and the boundary conditions of PDS (6.125)
)= m , n , k e α mnk t
u
(
r
, θ ,
z
,
t
[(
A mnk cos
β mnk t
+
B mnk sin
β mnk t
)
cos n
θ
+(
C mnk cos
β mnk t
+
D mnk sin
β mnk t
)
sin n
θ ]
J n
(
k mn r
)
Z k (
z
) .
(6.126)
(
, θ ,
,
)= ϕ (
, θ ,
)
Applying the initial condition u
r
z
0
r
z
yields
1
M mnk
A mnk =
ϕ (
r
, θ ,
z
)
J n
(
k mn r
)
Z k (
z
)
r cos n
θ
d
θ
d r d z
,
Ω
(6.127)
1
M mnk
C mnk =
ϕ (
r
, θ ,
z
)
J n (
k mn r
)
Z k (
z
)
r sin n
θ
d
θ
d r d z
.
Ω
Applying the initial condition u t (
0 leads to
α mnk A mnk + β mnk B mnk =
r
, θ ,
z
,
0
)=
0
,
α mnk C mnk + β mnk D mnk =
0
,
 
Search WWH ::




Custom Search