Environmental Engineering Reference
In-Depth Information
Solution. Based on the given boundary conditions, we have from Rows 1, 3 and 7
in Table 2.1,
m
2
l
sin m
π
x
l
2 ,
λ m =
,
X m (
x
)=
,
M m =
m
=
1
,
2
, ···
;
l
1
μ n
a
2
sin μ n y
a
a
2
sin2
μ n
λ
=
,
X n
(
y
)=
,
M n
=
+
,
n
2
μ n
y
ah 1 , n
the
μ n are the positive zero points of f 1 (
y
)=
tan y
+
=
1
,
2
, ···
;
μ k
b
2
sin μ k z
b + ϕ k
1
μ k
b
2
sin2
( μ k +
λ k =
,
X k (
z
)=
,
M k =
cos
2
ϕ k )
,
μ k
2
z
bh 2 , k
μ k are the positive zero points of f 2 (
the
z
)=
tan z
+
=
1
,
2
, ···
.
Thus the W ψ (
x
,
y
,
z
,
t
)
is, by Eq. (6.84)
m , n , k = 1
B mnk e α mnk t sin
u
=
W ψ (
x
,
y
,
z
,
t
)=
β mnk t
sin μ k z
b + ϕ k
sin m
π
x
sin μ
n y
a
·
,
l
(6.89)
l
d x a
0
d y b
1
M m M n M k β mnk
B mnk =
0 ψ (
x
,
y
,
z
)
0
sin μ k z
b + ϕ k d z
sin m
π
x
sin μ n y
a
·
,
l
where
1
τ 0 +
m
2 B 2
μ k
b
2
μ
2
1
2
l
n
a
α mnk =
+
+
,
4 m
2 A 2
μ k
b
2
μ n
a
2
1
2
l
2
mnk
β mnk =
+
+
4
α
.
Finally, the solution of PDS (6.88) is
1
W ϕ (
τ 0 +
B 2 W ( λ m + λ n + λ k ) ϕ (
u
=
x
,
y
,
z
,
t
)+
x
,
y
,
z
,
t
)
t
t
+
W ψ (
x
,
y
,
z
,
t
)+
W f τ (
x
,
y
,
z
,
t
τ )
d
τ .
0
Search WWH ::




Custom Search