Environmental Engineering Reference
In-Depth Information
is
1
W ϕ (
τ 0 +
B 2 W ( λ m + λ n + λ k ) ϕ (
=
,
,
,
)+
,
,
,
)
u
x
y
z
t
x
y
z
t
(6.79)
t
t
+
W ψ (
,
,
,
)+
W f τ (
,
,
,
τ )
τ ,
x
y
z
t
x
y
z
t
d
(6.80)
0
where f τ =
f
(
x
,
y
,
z
, τ )
.
Proof . By Theorem 2 in Section 6.1, we only need to prove that the solution of
u t
τ 0 +
B 2
A 2
u tt =
Δ
u
+
t Δ
u
,
Ω × (
0
, + ) ,
(6.81)
L
(
u
,
u n ) | ∂Ω =
0
,
u
(
x
,
y
,
z
,
0
)= ϕ (
x
,
y
,
z
) ,
u t (
x
,
y
,
z
,
0
)=
0
is
1
τ
W ϕ (
0 +
B 2 W ( λ m + λ n + λ k ) ϕ (
u
=
x
,
y
,
z
,
t
)+
x
,
y
,
z
,
t
) .
(6.82)
t
Similar to the two-dimensional case, we expand the solution of PDS (6.77) into
= m , n , k T mnk ( t ) X m ( x ) Y n ( y ) Z k ( z ) .
u
(6.83)
Substituting this into the equation yields the T mnk (
t
)
-equation
1
τ 0 +( λ m + λ n + λ k )
B 2 T mnk (
T mnk (
A 2 T mnk (
t
)+
t
)+( λ m + λ n + λ k )
t
)=
0
.
Its characteristic roots read
r 1 , 2 = α mnk ± β mnk i
,
where
1
τ 0 +( λ
B 2
4
1
2
1
2
2
mnk
α mnk =
+ λ
+ λ k )
, β mnk =
( λ
+ λ
+ λ k )
A 2
4
α
.
m
n
m
n
Thus the solution (6.83) becomes
= m , n , k e α mnk t
(
+
)
(
)
(
)
Z k (
) ,
u
A mnk cos
β mnk t
B mnk sin
β mnk t
X m
x
Y n
y
z
 
Search WWH ::




Custom Search