Environmental Engineering Reference
In-Depth Information
Thus
m C m e α m t cos β m t · X m ( x )=
t W ϕ (
x
,
t
)
d x e α m t sin
l
0 ϕ (
α
m
M m β m
m
x
)
X m (
x
)
β m t
·
X m (
x
)
1
m B 2
τ 0 + λ
=
1
M m β m
)+ m
t W ϕ (
x
,
t
2
d x e α m t sin
l
0 ϕ (
·
x
)
X m
(
x
)
β
m t
·
X m
(
x
) .
(6.62)
Substituting Eqs. (6.61) and (6.62) into Eq. (6.60) leads to the solution of PDS (6.56),
by using the structure of W ψ (
x
,
t
)
in Eq. (6.59),
1
τ 0 + λ
d x e α m t sin
l
0 ϕ (
m B 2
)=
W ϕ
1
M m β m
+ m
(
,
)
(
)
·
(
)
u
x
t
x
X m
x
β
m t
X m
x
t
2
1
d x e α m t sin
l
0 ϕ (
τ 0 + λ m B 2
2
1
M m
+ m
x
)
X m (
x
)
β m t
·
X m (
x
)
β m
1
W ϕ (
τ 0 +
=
x
,
t
)
t
m λ m
d x e α m t sin
l
0 ϕ (
1
M m β m
B 2
+
x
)
X m (
x
)
β m t
·
X m (
x
)
1
W ϕ (
τ 0 +
B 2 W λ m ϕ (
=
x
,
t
)+
x
,
t
) .
t
Example 1 .Solve
A 2 u xx +
B 2 u txx +
u t / τ 0 +
u tt =
f
(
x
,
t
) ,
(
0
,
l
) × (
0
, + ) ,
u x (
0
,
t
)=
0
,
u
(
l
,
t
)=
0
,
(6.63)
u
(
x
,
0
)= ϕ (
x
) ,
u t (
x
,
0
)= ψ (
x
) .
Solution. Based on the given boundary conditions, we have, from Row 4 in Ta-
ble 2.1,
(
2
2 m
+
1
) π
cos (
2 m
+
1
) π
x
l
2 .
λ m =
,
X m (
x
)=
,
M m =(
X m (
x
) ,
X m (
x
)) =
2 l
2 l
 
Search WWH ::




Custom Search