Environmental Engineering Reference
In-Depth Information
Thus
+
m = 0 e α m t
cos (
2 m
+
1
) π
x
u
(
x
,
t
)=
(
A m cos
β m t
+
B m sin
β m t
)
,
2 l
+
m = 0 { α m e α m t
u t (
x
,
t
)=
(
A m cos
β m t
+
B m sin
β m t
)
cos (
2 m
+
1
) π
x
e α m t
+
(
A m β m sin
β m t
+
B m β m cos
β m t
) }
2 l
where
2
4
1
τ 0 + λ m B 2
1
τ 0 + λ m B 2 2
1
2 ) π
1
2
1
2
(
m
+
α m =
, β m =
λ m A 2
, λ m =
.
l
Applying the initial condition u
(
x
,
0
)=
0 yields A m =
0. To satisfy the initial con-
dition u t (
x
,
0
)= ϕ (
x
)
, B m must be determined such that
+
m = 0 B m β m cos ( 2 m + 1 ) π x
= ψ (
x
) .
2 l
Thus
l
0 ψ (
1
M m β m
cos (
2 m
+
1
) π
x
B m =
x
)
d x
,
2 l
is the normal square of cos (
.
2 m
+
1
) π
x
l
2
where M m =
2 l
Finally, we have
+
m = 0 B m e α m t sin β m t cos ( 2 m + 1 ) π x
u
(
x
,
t
)=
W ψ (
x
,
t
)=
,
2 l
(6.47)
cos (
+
) π
M m β m 0 ψ (
1
2 m
1
x
B m =
x
)
d x
2 l
and the solution of PDS (6.46), by the solution structure theorem, is
1
τ
W ϕ (
t
0 +
(
,
)=
u
x
t
x
,
t
)+
W ψ B 2 ϕ (
x
,
t
)+
W f τ (
x
,
t
τ )
d
τ .
t
0
Remark 3. u
actually enjoys a very elegant structure. We may use
this structure and Table 2.1 to write out W ψ (
(
x
,
t
)=
W ψ (
x
,
t
)
be the
eigenvalues and eigenfunctions from Table 2.1 based on given boundary conditions.
The structure of W ψ (
x
,
t
)
directly. Let
λ
m and X m
(
x
)
x
,
t
)
is thus
+
B m e α m t sin
u
(
x
,
t
)=
W ψ (
x
,
t
)=
β m t
·
X m (
x
) ,
m
=
0or1
(6.48)
l
0 ψ (
1
M m β m
=
)
(
)
.
B m
x
X m
x
d x
 
Search WWH ::




Custom Search