Environmental Engineering Reference
In-Depth Information
B 2
l
0 ϕ ( ξ )
l
0
sin n
πξ
l
sin n
πξ
l
ϕ ( ξ )
=
d
ξ
B 2 l
sin n
πξ
l
0 ϕ ( ξ )
=
ξ ( ϕ (
)= ϕ (
)=
) .
d
0
l
0
Therefore, the B n in Eq. (6.21) reads
l
0 ϕ ( ξ )
l
0 ϕ ( ξ )
B 2
1
sin n
πξ
l
ξ +
sin n
πξ
l
B n =
d
d
ξ .
τ
0 l
β n
l
β n
Also, in Eq. (6.30b)
1
τ 0 +
2 l
0 ϕ ( ξ )
n
1
π
B
sin n
πξ
l
B ( 2 )
=
α
d
ξ
n
n
l
β n
l
l
0 ϕ ( ξ )
l
0 ϕ ( ξ )
B 2
l
1
τ 0 l
sin n
πξ
l
sin n
πξ
l
=
d
ξ +
d
ξ .
β n
β n
Therefore, Eqs. (6.21) and (6.31) are the same although they have different forms.
Solve PDS (6.22) and verify its solution
By Theorem 2 in Section 6.1, the solution of PDS (6.22) is
t
u
(
x
,
t
)=
W f τ (
x
,
t
τ )
d
τ
0
+
n = 1
2
l
e α n ( t τ ) sin
t
l
sin n
πξ
l
sin n
π
x
=
( ξ ,
)
(
τ )
f
t
d
ξ
β
t
d
τ
n
β n
l
0
0
l
t
=
(
, ξ ,
τ )
( ξ , τ )
τ ,
d
ξ
G
x
t
f
d
0
0
where
+
n = 1
2
l
1
β n
e α n ( t τ ) sin n
π
x
sin n
πξ
l
G
(
x
, ξ ,
t
τ )=
sin
β n (
t
τ ) .
l
It is the same as Eq. (6.28) obtained by the Fourier method of expansion.
6.2.2 Existence
The nominal solution of
A 2 u xx +
B 2 u txx ,
u t / τ 0 +
u tt =
(
0
,
l
) × (
0
, + ) ,
u
(
0
,
t
)=
u
(
l
,
t
)=
0
,
t
>
0
,
(6.32)
u
(
x
,
0
)= ϕ (
x
) ,
u t (
x
,
0
)= ψ (
x
)
 
Search WWH ::




Custom Search