Environmental Engineering Reference
In-Depth Information
t
t 2 t
2
1
τ 0
τ +
=
W f τ (
M
,
t
τ )
d
W f τ (
M
,
t
τ )
d
τ
t
0
0
t
t
B 2
A 2
Δ
W f τ (
M
,
t
τ )
d
τ
t Δ
W f τ (
M
,
t
τ )
d
τ
0
0
t
t
τ ) τ = t
2 W f τ
W f τ
1
τ 0
=
d
τ +
W f τ (
M
,
t
+
d
τ
t
t 2
0
0
τ = t
A 2 t
t
0 Δ
+
W f τ
B 2
0 Δ
W f τ d
τ
W f τ d
τ
t
t
t
t
A 2 t
2 W f τ
1
τ
W f τ
=
d
τ +
d
τ +
f
(
M
,
t
)
0 Δ
W f τ d
τ
t 2
t
0
0
0
B 2 t
0
W f τ τ = t
t Δ
W f τ d
τ + Δ
1
d
t
2 W f τ
τ 0
W f τ
+
B 2
A 2
=
W f τ
τ +
(
,
)
Δ
t Δ
W f τ
f
M
t
t
t 2
0
t
=
τ +
(
,
)=
(
,
) .
0d
f
M
t
f
M
t
0
Satisfaction of Boundary Conditions
By substituting Eq. (6.10) into the boundary conditions of PDS (6.9) and applying
the boundary conditions of PDS (6.11), we have
L u
∂Ω =
∂Ω
L t
0
t
,
u
W f τ (
M
,
t
τ )
d
τ ,
W f τ (
M
,
t
τ )
d
τ
n
n
0
L t
0
∂Ω
t
=
W f τ d
τ ,
n W f τ d
τ
0
L W f τ ,
∂Ω
t
=
n W f τ
d
τ =
0
.
0
Satisfaction of Initial Conditions
It is straightforward to show that the u in Eq. (6.10) satisfies the initial condition
u
(
M
,
0
)=
0. Also,
t
)=
u t (
M
,
t
W f τ (
M
,
t
τ )
d
τ
t
0
t
τ ) τ = t .
W f τ
=
d
τ +
W f τ (
M
,
t
t
0
 
Search WWH ::




Custom Search