Environmental Engineering Reference
In-Depth Information
1
τ
2 W ϕ
1
τ
0
W ϕ
+
B 2
A 2
=
Δ
W ϕ
t Δ
W ϕ
t
t 2
0
1
τ
2 W ϕ
+
0
W ϕ
t +
B 2
A 2
Δ
W ϕ
t Δ
W ϕ
t 2
t
1
τ
W ϕ 1
2 W ϕ 1
0
W ϕ 1
t +
B 2
A 2
+
Δ
W ϕ 1
t Δ
=
0
,
t 2
in which we have used Eqs. (6.6a) and (6.7a).
Satisfaction of Boundary Conditions
Substituting Eq. (6.5) into the boundary conditions of PDS (6.4) leads to
L u
∂Ω
,
u
n
L 1
W ϕ +
1
W ϕ +
W ϕ 1 ∂Ω
τ 0 +
τ 0 +
=
W ϕ 1 ,
t
n
t
∂Ω +
∂Ω +
∂Ω =
L W ϕ ,
t L W ϕ ,
L W ϕ 1 ,
1
τ
W ϕ
W ϕ
W ϕ 1
=
0
,
n
n
n
0
where we have used Eqs. (6.6b) and (6.7b).
Satisfaction of Initial Conditions
By using Eqs. (6.6c) and (6.7c), we have
1
W ϕ (
t = 0
τ 0 +
u
(
M
,
0
)=
M
,
t
)+
W ϕ 1 (
M
,
t
)
t
t = 0 +
1
τ 0 W ϕ (
)+
W ϕ
=
M
,
0
W ϕ 1 (
M
,
0
)= ϕ (
M
) .
t
Also
1
W ϕ (
u
t =
τ 0 +
M
,
t
)+
W ϕ 1 (
M
,
t
)
t
t
2 W ϕ
τ 0
1
W ϕ
t +
+
W ϕ 1
=
t 2
t
B 2
W ϕ +
W ϕ 1
A 2
=
Δ
W ϕ +
t Δ
t
W ϕ
+
W ϕ 1
A 2
B 2
=
Δ
W ϕ +
Δ
.
t
t
 
Search WWH ::




Custom Search