Environmental Engineering Reference
In-Depth Information
By Eq. (5.70) in Section 5.4, we obtain the fundamental solution
ch A A 2
t
2
2
2
1
(
t
τ )
(
x
ξ )
(
y
η )
t τ
2
e
u 2 (
x
,
y
,
t
)=
τ 0 d
τ
A 2
2
π
A
τ 0
(
t
τ )
2
(
x
ξ )
2
(
y
η )
2
0
D A ( t τ )
· δ ( ξ
x 0 , η
y 0 , τ
t 0 )
d
ξ
d
η
ch A A 2
(
t
t 0 )
2
(
x
x 0 )
2
(
y
y 0 )
2
1
t
t 0
e
A 2
=
2
τ 0
2
π
A
τ
(
t
t 0 )
2
(
x
x 0 )
2
(
y
y 0 )
2
0
1
( x x 0 ) 2 +( y y 0 ) 2
A 2
ch t t 0
2
1
τ 0
2
t t 0
0
( t t 0 )
e
=
1
,
(5.78)
a 2
2
π
(
t
t 0 )
( x x 0 ) 2 +( y y 0 ) 2
A 2
2
(
t
t 0 )
where x , y and t satisfy
2
2
(
x
x 0 )
+(
y
y 0 )
A
(
t
t 0 )
so that M
(
x
,
y
,
t
) Ω P 0 ,
the characteristic cone of P 0 (
x 0 ,
y 0 ,
t 0 )
. Outside
Ω P 0 , u
(
x
,
y
,
t
)
0. Therefore,
Eq. (5.78)
(=
0
) ,
M
(
x
,
y
,
t
) Ω P 0 ,
u 2 (
x
,
y
,
t
)=
= ,
M
(
x
,
y
,
t
)
on the characteristic cone surface,
=
0
,
M
(
x
,
y
,
t
)
outside
Ω P 0 .
(5.79)
5.6.2 Common Properties
1. By using ch0
=
1, we obtain from Eqs. (5.77) and (5.78)
lim
M
u 1 (
x
,
y
,
t
)= ,
lim
M
u 2 (
x
,
y
,
t
)= .
P 0
P 0
This is physically-grounded because
δ (
x
x 0 ,
y
y 0 ,
t
t 0 )
implies a very high
temperature at point
(
x 0 ,
y 0 )
and time instant t 0 .
T 1 and u 2 (
Note here that
[ δ (
x
x 0 ,
y
y 0 ,
t
t 0 )] = Θ
x
,
y
,
t
)
is a higher-order
P 0 .
2. By Eq. (5.77), we have, for any point
infinity than u 1 (
x
,
y
,
t
)
as M
R 2 ,
(
,
)
x
y
lim
u 1
(
x
,
y
,
t
)=
0
.
t
+
 
Search WWH ::




Custom Search