Environmental Engineering Reference
In-Depth Information
the rule of writing the Green function, we obtain
+
τ 0 γ mnl M mnl sin m
1
πξ
l 1
sin m
π
x
t
τ
0
e
G
(
x
, ξ
; y
, η
; z
, ζ
; t
τ )=
l 1
m
,
n
,
l
=
1
(4.55)
cos μ l ζ
l 3
cos μ l z
l 3
sin μ
η
l 2
sin μ
n y
l 2
n
·
sin
γ mnl (
t
τ )
where M mnl =
γ mnl are determined by Eq. 4.53. Therefore, we have the
solution of PDS (4.54) at
M m M n M l ,
ϕ = ψ =
0.
t
u 3 =
d
τ
G
(
x
, ξ
; y
, η
; z
, ζ
; t
τ )
f
( ξ , η , ζ , τ )
d v
.
(4.56)
0
Ω
2. By the rule for writing W ψ (
from the G in Section 4.3.1 (Remark 1), we
can obtain the solution of PDS (4.54) for the case f
x
,
y
,
z
,
t
)
= ϕ =
0,
u 2
=
W ψ (
x
,
y
,
z
,
t
)
+
m , n , l = 1
cos μ l z
l 3
b mnl sin m
π
x
sin μ n y
l 2
t
e
=
2
τ 0
sin
γ mnl t
,
l 1
(4.57)
cos μ l z
l 3
1
γ mnl M mnl
sin m
π
x
sin μ n y
l 2
b mnl =
ψ (
x
,
y
,
z
)
d v
.
l 1
Ω
3. We can obtain W ϕ (
x
,
y
,
z
,
t
)
by replacing
ψ
in Eq. (4.57) by
ϕ
. The solution of
PDS (4.54) at f
= ψ =
0 reads, by the solution structure theorem,
1
τ
W ϕ (
0 +
u 1
=
x
,
y
,
z
,
t
) .
(4.58)
t
4. The solution of PDS (4.54) is, by the principle of superposition
u
(
x
,
y
,
t
)=
u 1 (
x
,
y
,
t
)+
u 2 (
x
,
y
,
t
)+
u 3 (
x
,
y
,
t
) .
Remark. By the multiple separation of variables for solving PDS (4.52), the first
separation of variables separates t from x , y and z and yields
0 T +
T + λ
a 2 T
τ
=
0
,
(4.59)
is the separation constant. Another two separations of variables lead to
three eigenvalue groups
where
λ
λ m ,
λ n ,
λ l and three eigenfunction sets X m (
x
)
, Y n (
y
)
and
Z l (
z
)
.The
λ
in Eq. 4.59 is
λ = λ m + λ n + λ l , which is true only for some special
cases and is not universal.
 
Search WWH ::




Custom Search