Environmental Engineering Reference
In-Depth Information
3.5 Multiple Fourier Transformations for Two-
and Three-Dimensional Cauchy Problems
3.5.1 Two-Dimensional Case
Find the solution of
u t =
a 2
R 2
Δ
u
,
× (
0
, + ) ,
(3.50)
u
(
x
,
y
,
0
)= ϕ (
x
,
y
) ,
where R 2
× (
0
, + )
stands for
<
x
,
y
< +
. t
(
0
, + )
.
Solution. Apply a double Fourier transformationwith respect to x and y to PDS (3.50)
to obtain
2 u
u t +( ω
a
)
=
0
,
u
( ω ,
0
)=
ϕ ( ω ) ,
¯
(3.51)
2
1
2 (see Appendix B). The solution of
where u
( ω ,
t
)=
F
[
u
(
x
,
y
,
t
)]
,
ω
= ω
+ ω
Eq. (3.51) is
2 t
2 t
e ( ω a )
e ( ω a )
¯
u
=
A
( ω )
=
ϕ ( ω )
,
(3.52)
where ¯
ϕ ( ω )=
F
[ ϕ (
x
,
y
)]
. It follows from Section 3.4.1 that
F 1 e ( ω 1 a )
2 t
F 1 e ( ω 2 a )
2 t
1
2 a π
x 2
4 a 2 t
1
2 a π
y 2
4 a 2 t
t e
t e
=
,
=
,
F 1 e ( ω a )
2 t
F 1 e ( ω
a 2 t
x 2
y 2
4 a 2 t
1
4 a 2
+
2
1 + ω
2
2 )
t e
=
=
.
π
Therefore, the solution of Eq. (3.50) is, by a double inverse Fourier transformation
to Eq. (3.52) and the convolution theorem,
u
=
W ϕ (
x
,
y
,
t
)=
ϕ ( ξ , η )
V
(
x
, ξ ,
t
)
V
(
y
, η ,
t
)
d
ξ
d
η .
(3.53)
R 2
By the solution structure theorem,
t
t
u
=
W f τ (
x
,
y
,
t
τ )
d
τ =
d
τ
f
( ξ , η , τ )
V
(
x
, ξ ,
t
τ )
V
(
y
, η ,
t
τ )
d
ξ
d
η
0
0
R 2
(3.54)
 
Search WWH ::




Custom Search